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Mass spectrometry imaging is unique as it has becoming a versatile and 

interdisciplinary technique; it openly crosses the boundaries between chemistry and 

biology as it combines detailed chemical and spatial information within biological 

samples. In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was 

used to analyze human breast cancer tissue and murine β cell neoplasia. ToF-SIMS for 

tissue sample analysis is an emerging field, so the development of characterization 

methods is critical to provide a framework for multiple tissue comparisons.  

The work presented here demonstrates a multivariate analysis method to isolate 

and analyze specific tissue regions of interest by utilizing principal components analysis 

(PCA) of ToF-SIMS images is presented, which allowed separation of cellularized areas 

from stromal areas. These PCA-generated regions of interest were then used as masks 

to reconstruct representative spectra from specifically stromal or cellular regions. The 

advantage of this unsupervised selection method is a reduction in scatter in the spectral 

PCA results when compared to analyzing all tissue areas or analyzing areas highlighted 

by a pathologist. Using this method, stromal and cellular regions of breast tissue 

biopsies taken pre- versus post-chemotherapy demonstrate chemical separation. Fatty 

acids (i.e. palmitic, oleic, and stearic), monoacylglycerols, diacylglycerols and vitamin E 

profiles were distinctively different between the pre- and post-therapy tissues.  
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Utilizing this method, which provides a framework to compare a multiple tissue 

samples using imaging ToF-SIMS, 23 pre-treated breast cancer tissue biopsies were 

analyzed. Using the PCA generated masks, it was possible to compare regions with a 

focus on metabolic changes occurring within breast cancer tissue to reveal the chemical 

profile of chemoresistance. Comparing ToF-SIMS cellular and stromal region data from 

specific subtypes, e.g. triple negative, has shown promise in defining chemical 

differences between patients that respond to chemotherapy and those that do not. 

These differences were related primarily to fatty acids and sphingomyelin.  

In another experiment, ToF-SIMS was applied to generate a high resolution in 

situ molecular analysis of Myc-induced pancreatic β cell islet tumors to investigate the 

tumor microenvironment. Employing PCA, we show that it is possible to chemically 

distinguish cancerous islets from normal tissue, in addition to intratumor heterogeneity. 

These heterogeneities can then be imaged and investigated using another modality 

such as second harmonic generation (SHG) microscopy. Using these techniques with a 

specialized mouse model, we found significant metabolic changes occurring within β 

cell tumors and the surrounding tissues. Specific alterations within the lipid, amino acid, 

and nucleotide metabolism were observed, demonstrating that ToF-SIMS can be 

utilized to identify large-scale changes that occur in generated in the tumor 

microenvironment and could thereby increase our understanding of tumor progression 

and the tumor microenvironment. 
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 INTRODUCTION  Chapter 1.

 GENERAL OVERVIEW 1.1

Exploration using molecular imaging techniques to define the complex 

relationship between spatial organization, structure, and function of molecules of 

biological systems continues to drive biological and clinical research.  Molecular 

identification and localization within distinct regions of biological tissue samples is 

imperative to elucidate the functions within a biological system. While understanding 

how these functions operate normally is important, it becomes equally important to 

determine the cause of dysfunctions within the biological system. Tissue samples are 

typically explored using conventional imaging modalities showing structure and 

organization, however conventional molecular investigations require knowledge of 

specific targets a priori. In cancer research, for example, histological staining is used to 

determine the location, type and grade of tumors, providing high prognostic value. 

Histological staining is subjective to interpretation and not completely predictive of 

patient outcome or response to chemotherapeutics. In addition to these established 

methods, it is beneficial to obtain chemical information that represents the biochemical 

characteristics and patterns of cancerous tissues. The ability to identify and map the 

distribution of small, intracellular molecules, such as metabolites, within cancerous cells 

and tissues provides a method to ascertain chemical information not available by 

conventional methods. Imaging time-of-flight secondary ion mass spectroscopy (ToF-

SIMS), an ultra-high vacuum (UHV) technique, which provides a label-free molecular 

map of a sample composed of specific secondary ions and is well suited to provide 

detailed chemical information with the high lateral resolution required for mapping tissue 

sections.  

Advancements in ToF-SIMS instrumentation have made it a powerful and novel 

tool for biological research. Liquid metal ion guns (LMIGs) produce finely focused ion 

beams increasing spatial resolution in the sub-micron range for biological samples, 

while simultaneously increasing the yield of secondary ions, delivering crucial chemical 

data.1-3 Pairing LMIGs with a time-of-flight analyzer further provides the ability to obtain 
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valuable chemical data as it simultaneously detects all desorbed secondary ions with a 

mass resolution of (m/Δm) of 10,000.4, 5 The detection of all molecular species can 

provide for new hypotheses or biological conclusions by mapping and identifying 

previously unknown species within a tissue or cell.  

These strengths have led to a considerable amount of research using ToF-SIMS 

for tissue analysis. However, much of this research has focused on proof of principle 

type studies often comparing a distinctly diseased tissue to a healthy tissue and 

describing the distribution of fatty acids, various lipids, and other biomolecules.6-14 

Cancerous tissues present a challenge to ToF-SIMS analysis due to their complexity 

and heterogeneity. To progress upon these concepts and take the next step in 

biochemically interpreting complex tissue samples, such as cancer biopsies, requires 

the improvement and development of data analysis techniques so that multiple tissues 

can be compared for better clinical relevancy. Improving the methods for tissue data 

analysis offers the capability to reveal significant metabolic events occurring within the 

tumor microenvironment, cancer metabolism, and aid in potential diagnosis and 

treatment efficacy.  

 OBJECTIVE 1.2

The primary goal of the work presented here is to relate the chemical differences 

obtained from ToF-SIMS spatial chemical images to metabolic pathways. The 

objectives of this work include: 1) the development of a ToF-SIMS data analysis method 

that is able to isolate and compare distinct regions, i.e., cellular to cellular, across 

multiple tissue samples by utilizing the chemical fingerprint of that region, and 2) 

develop a method to semi-quantitatively map the spatial distribution of lipids and smaller 

molecules (such as amino acids) present within in situ tumors. These methods are then 

applied to cancerous tissues to provide as an analytical tool to identify chemical 

variation of these specific regions between tissues. This work includes investigating 

human breast cancer tissue biopsies to assess metabolic mechanisms underlying 

chemotherapeutic resistance and spatial chemical analysis of amino acids within 

tumors. Method two will also be used to study the tumor microenvironment and 

intratumor heterogeneity using pancreatic tissue sections from a Myc-induced β-cell 
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neoplastic mouse model. The entirety of this work is separated into specific aims and 

described below.  

 

Specific Aim 1: An unsupervised multivariate analysis method to compare specific 

regions in human breast tissue samples using ToF-SIMS. 

Objective: Develop a method that uses multivariate analysis of ToF-SIMS image data 

acquired from human breast cancer tissue biopsies to identify the largest amount of 

variance between specific spatial and chemical regions.  

Hypothesis: Dense cellular areas or tumors are chemically different than the 

surrounding connective tissue, or stroma. This difference between regions can be 

exploited chemically and spatially by the application of a multivariate analysis technique 

to ToF-SIMS data. Analyzing these regions will provide potential metabolic 

understandings of specific regions within pre and post chemotherapeutic treated breast 

cancer tissue samples.  

 

Specific Aim 2: Analysis and characterization of human breast cancer tissue biopsies 

using ToF-SIMS to determine small biologically important molecules that affect 

chemotherapeutic outcomes and tumor progression. 

Objective: Using the analysis technique developed in Specific Aim 1, isolated cellular 

and stromal regions within 23 human breast cancer tissues will be investigated to 

interpret metabolic mechanisms due to the presence of specific molecular species 

detected by ToF-SIMS. This will provide a new perspective of specific alterations in 

cancer metabolism by being able to chemically characterize distinct regions across 

multiple patients at micron resolution.  

Hypotheses: Spatially mapped chemical information can be obtained from human 

breast cancer biopsy samples. Lipid species and small molecular fragments derived 

from metabolites can be identified that may aid in determining the susceptibility of a 

tumor to be chemoresistant when compared to other tumors.  

 

Sub Aim 1: Characterize the spatial distribution of amino acids and nucleobases 

present within in situ tumors. 
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Objective: Identify the chemical variability of location of amino acids, nucleobases, and 

other low molecular weight species within ductal carcinoma in situ (DCIS) using ToF-

SIMS. Spatially mapping this chemical information provides a way to corroborate 

genetic expression data and other ToF-SIMS data of higher mass metabolites 

associated within the same tissue region.  

Hypotheses: Amino acid generation, degradation, and recycling are constantly occurring 

within the body. These molecules can be converted into metabolic intermediates that 

can be used as fuel for tumors and are also used in proteins required for cell 

proliferation. The location of specific amino acids at the boundary and within the tumor 

may aid in determining tumor malignancy and metabolic processes enhancing tumor 

growth.   

 

Specific Aim 3: Analysis of the pancreatic β cell islet tumor microenvironment using 

imaging ToF-SIMS 

Objective: Specific metabolites (e.g. amino acids and lipids) within an isolated tumor will 

be compared with that of control islets to elucidate metabolic changes occurring within 

the tumor. Further comparison of these metabolites and the surrounding tissue of the 

tumor to that of a control islet surrounding tissue demonstrate interactions between the 

tumor and the cells surrounding it.  

Hypotheses: Myc induced β-cell islet tumors will contain higher intensities of fatty acids 

and amino acids than non-induced β-cell islets. Synthesis of these metabolites will be 

due to Myc activation of enzymes that are responsible for producing fatty acid 

precursors and fatty acid chain elongations and other metabolic pathways that have 

deregulated. Tissue surrounding the tumor will show a depletion of metabolites that the 

will provide the tumor to continue to progress.  
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 BACKGROUND  Chapter 2.

As described, the aim of this project was to push the capabilities imaging time-of-

flight secondary ion mass spectrometry (ToF-SIMS) as a tool to chemically and spatially 

identify biologically significant molecules within complex tissue samples, specifically 

cancerous tissues. This chapter will introduce topics that are necessary for fundamental 

understanding this thesis including: (1) a short introduction to mass spectrometry 

imaging techniques (2) an overview of the theory and governing equations of SIMS and 

(3) principal components analysis fundamentals (4) a short literature review of previous 

investigations of cells and tissues using ToF-SIMS.     

 OVERVIEW OF MASS SPECTROMETRY IMAGING TECHNIQUES 2.1

 Mass spectrometry imaging (MSI) has become an interdisciplinary technique as it 

crosses the boundaries of physics, chemistry, and biology. MSI allows for the 

investigation of the spatial distributions of specific molecules at complex surfaces such 

as cells and tissues. There are many techniques of MSI each with its advantages, 

disadvantages, and methods for analysis. In this section three of the most utilized MSI 

techniques will be introduced: matrix assisted laser desorption ionization (MALDI), 

desorption electrospray ionization (DESI), and SIMS. These techniques are quite 

different from one another by methods of ionization, spatially resolution, and 

performance, as shown in Table 2.1. SIMS is well known for its superior spatial 

resolution down to the nanometer range and is well suited for elemental imaging and 

inorganic samples. SIMS is beginning to be used more frequently for biological analysis 

but suffers from sensitivity in the high mass range, making it difficult to identify whole 

proteins or biomolecules. DESI has the advantage of being performed at atmospheric 

pressure allowing direct analysis of living samples or thin sections of tissues without any 

sample preparation. However, DESI is limited in its lateral resolution and detecting high 

molecular weight peptides and proteins.15, 16 MALDI has the advantage to be applied to 

many types of samples and has excellent sensitivity up to a mass range of 100 kDa, 

and lateral resolution between that of SIMS and DESI. However, MALDI requires a 

matrix to be applied to the sample to aid in ionization of analyte molecules, which 
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affects the lateral resolution and the application has been considered arduous and 

quality limiting.17 This section will provide an overview of these techniques, followed by 

a focus on ToF-SIMS.   

Table 2.1. Important aspects and properties of common desorption/ionization methods commonly used 
for mass spectrometry imaging. Adapted table combining information from van der Heide

18
 and 

Armstalden van Hove
19

. All values provided for SIMS sources are the optimized primary ion column 
values.  

Source Examples Environment Energy Spot Size (d) 
MW Range 

(m/z) 
Liquid metal 

ion gun 
Ga

+
, In

+
, 

Aun
+
, Bin

q+
 

UHV < 1- 40 keV < 10 nm 0−3000 

Solid-state 
gun 

Cs
+ 

UHV 1-16 keV < 50 nm 0−3000 

Cluster 
Sources 

C60
+
 UHV 5 eV−40 keV 

200 nm –  
     200 μm 

0−3000 

Arn
+
 UHV 20 −40 keV 2−50 µm 0−3000 

MALDI 
Nd:YAG, N2, 

ND:YLF
 

UHV, HV, 
Ambient 

100-200 
J/pulse 

5−300 μm 100−500,000 

DESI 
Solvent (e.g. 
H2O, MeOH, 
DMF/ACN) 

Ambient n/a > 150 μm 100−66,000 

 

2.1.1 MATRIX-ASSISTED LASER DESORPTION IONIZATION (MALDI) MASS SPECTROMETRY 

As implied by the name, MALDI maging analysis requires the application of a 

matrix to be applied to the sample to aid in laser ionization of analyte molecules. Matrix 

solutions have a strong absorbance at the wavelength of the laser and must be applied 

on the surface of the sample. Matrix solutions consist of three major components: an 

organic solvent (typically methanol or acetonitrile), an organic acid (the matrix), and 

trifluoroacetic acid (TFA). The organic solvent extracts molecules from the tissue and 

quickly evaporates, allowing the matrix to form crystals from the weak organic acid.20 

The extracted molecules are then incorporated into the growing matrix crystals. Using 

TFA increases the availability of protons for ionization. After matrix application, a laser is 

fired at surface and the laser’s energy is absorbed by the matrix and formed crystals 

causing ablation and desorption of the analyte within the matrix. Ionization of the 

desorbed species occurs by proton and cation transfer reactions throughout the ablated 

plume, allowing for detection at the mass analyzer. MALDI is a soft ionization technique, 

capable of desorbing large molecular species off the sample surface without 
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fragmentation during ionization. This includes large lipid species and entire proteins. 

MALDI instruments can be combined with multiple types of mass analyzers including 

Fourier transform ion cyclotron resonance (FT-ICR) and FT-Orbitrap for high mass 

resolution and high mass accuracy, but the typical mass analyzer of choice is a time-of-

flight (ToF).19 This is also the mass analyzer of choice for SIMS mass spectrometry 

imaging, as its speed, sensitivity and mass range detection make it attractive. However, 

ToF-SIMS range is typically limited to m/z 2000, due to extensive surface fragmentation, 

while MALDI can detect species up to m/z 200,000.19, 21 

The spatial resolution in MALDI is limited mainly by the matrix type and 

application, which has an effect on the resulting crystal size, and the ability to focus the 

laser. The quality of the mass spectrometric image is dependent on the matrix 

coverage, and matrix coverage is dependent on surface parameters such as the 

wetness of the surface during application, and thickness of the crystal layer.20 

Therefore, the smaller the crystal sizes the higher the image resolution. For tissue 

imaging, the choice of matrix is extremely important for quality and validity of imaging 

data, as the spatial resolution can be affected by the matrix crystal size, which is 

typically above 10 µm.22 The matrix choice also determines the types of species that 

can be analyzed (e.g. lipids or proteins). It is also possible to increase image resolution 

by decreasing the diameter of the laser spot but this will decrease sensitivity.  

 Recently, MALDI researchers have shown that it is possible to achieve 3-7 µm 

spatial resolutions of biological samples and single cells,23-26 but most MALDI imaging 

experiments are performed with a spatial ranging from 50−200 µm.27, 28  

MALDI has established itself as an incredibly versatile analytical technique with a 

high level of accuracy on tissue, one of the most heterogeneous and difficult samples to 

analyze. The technique has been involved in many studies to determine cancer 

mechanisms and biomarkers. 29-34 

As discussed previously, ToF-SIMS is able to provide higher spatial resolution 

but a lower mass range when compared to MALDI. Research groups have combined 

the two techniques to provide a complementary analysis of biological samples. 

Examples that of studies that have utilized both ToF-SIMS and MALDI include the 

analysis of Fabry disease biomarkers,35 rat-brain sections,11 and spinal cord.36  
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2.1.2 DESORPTION ELECTROSPRAY IONIZATION (DESI) MASS SPECTROMETRY 

DESI is an ionization technique that uses charged solvent droplets to extract 

analysis from a sample surface. DESI is executed by directing electrosprayed charged 

droplets and ions of solvent onto the sample surface. The impact of these charged 

droplets/particles on the surface produces secondary microdroplets and gaseous ions of 

material originally present on the surface.37  These microdroplets and ions are then 

drawn into the inlet of a mass spectrometer. The angle of the secondary microdroplets 

and the MS inlet must be optimized to allow the maximum ion volume to enter the mass 

spectrometer.38 Similar to MALDI and the composition of the matrix used, solvent 

composition used in DESI can also provide different chemical information. Results 

experimenting with solvents have showed that mixtures of N, N – dimethylformanide 

(DMF) with water or methanol enhances the signal of low molecular weight compounds, 

when compared to mixtures of DMF with acetonitrile (ACN), which showed an increased 

extraction of lipids from tissue sections.39 In addition, mixtures of DMF and ACN were 

deemed “morphologically friendly,” meaning that there were able to extract lipids from 

tissue sections without damaging or causing gross changes in morphology.39, 40 This 

allows for histological staining after DESI analysis.   

The primary advantages of DESI are its ability to characterize samples at 

atmospheric pressure which enables direct analysis of samples in real time and that 

samples require little to no sample preparation. DESI surpasses ToF-SIMS in its ability 

to analyze high mass species with very high resolution and also the ability to combine 

analysis with MS/MS capabilities as it is compatible with many mass analyzers. Mass 

analyzers that have been used for DESI imaging include triple qudrupoles,41 FT-ICR,42 

and Orbitraps.43  DESI has the lowest spatial resolution compared to that of MALDI or 

SIMS. The typical resolution ranges between 180−220 μm for proteins and lipids in 

tissue samples,44, 45 but for smaller compounds less than 15 μm has been 

demonstrated.46  

Many studies have utilized the strengths of DESI for cancer tissue investigations, 

which have shown its promise as a clinical tool. Identification of tumor margins,43, 47, 48 

biomarkers in cancerous tissues,49, 50 brain tumor classification,45 as well as a 

intraoperative molecular diagnosis of brain tumors.51  
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 SECONDARY ION MASS SPECTROMETRY (SIMS) 2.2

SIMS is an ultra-high vacuum (UHV) surface analytical tool capable of obtaining 

chemical information from biological samples with sub-micron spatial resolution and 

high chemical specificity. SIMS requires no matrix, fluorescently labeled analogs, tags, 

extraction, or harsh chemical treatment to samples to obtain chemically sensitive 

spectra or high resolution two and three-dimensional images. In a conventional SIMS 

experiment, an energetic primary ion beam is focused onto a sample surface. The 

primary ions used in this beam can consist of atomic, polyatomic, or range of clusters 

(Ar+, Ga+, Cs+, O2
+, Aun

+, Bin
q+, SF5

+, C60
+, Arn

+) which, on impact of the sample surface, 

causes sputtering of molecular and atomic species. Some of these ejected species are 

charged, making them secondary ions. The impact site of the primary ion beam tends to 

generate atomic and small molecular fragments, but as distance is increased from the 

impact site large molecular compounds tend to desorb. A simplified image showing the 

process of the SIMS using a monatomic primary ion beam is illustrated in Figure 2.1. 

The majority (approximately 99%) of the ejected species are neutral and are not 

analyzed unless post-ionized with a secondary source, typically a laser.52 The charged 

species, or secondary ions, are then extracted into a time-of-flight mass analyzer, 

resulting in the generation of a mass spectrum characteristic of the analyzed surface.  



www.manaraa.com

10 

 

 

Figure 2.1. Simplified image of the sputtering process from a monatomic primary ion beam that occurs in 
secondary ion mass spectrometry. Image adapted from Daniel J. Graham. 

 

The chemical composition of a sample can be mapped by combining a mass 

analyzer with a narrowly focused primary ion beam and rastering it across the sample 

surface. A complete mass spectrum is obtained at each point of impact of the rastered 

ion beam. Measurements can range from a few minutes to several hours based on the 

size of the analysis are and the desired mass range. After the data has been acquired, 

an ion of interest or a combination of ions can be selected and their surface distribution 

can be visualized. A major strength of SIMS imaging is the ability to identify regions of 

interest from the total ion image and the mass spectra from the pixels in that region can 

be summed, allowing for spectral investigations.  

2.2.1 FUNDAMENTAL SIMS EQUATION 

The yield of secondary ions is dependent on a number of parameters and is 

summarized in the essential SIMS equation below53: 
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 𝐼𝑠
𝑚 = 𝐼𝑝𝑦𝑚𝛼𝑚

± 𝜃𝑚𝜂 (2.1) 

 
𝐼𝑠

𝑚: Secondary ion current of species m 

𝐼𝑝: Primary ion particle flux 

𝑦𝑚: Sputter yield of species m 

𝛼𝑚
± : Ionization probability of positive or negative ions 

𝜃𝑚: Fractional concentration of m in the surface layer  

𝜂: Transmission of the analysis system 

 

Secondary ions of species m (𝐼𝑠
𝑚) are sputtered from a surface, usually a solid, as a 

result from the bombardment of energetic primary ions from the uppermost monolayers 

of the surface. The secondary ion (SI) current of m is dependent on the two 

fundamental parameters, 𝑦𝑚, and 𝛼𝑚
± . Where 𝑦𝑚  is the yield of sputtered particles of 

species m, neutral or ionic, per primary particle and 𝛼𝑚
±  is the ionization probability of 

species m.  

2.2.2 SPUTTERING 

The sputter yield can be defined as: 

 𝑦𝑚 =
𝑁𝑚

𝑁𝑝
 (2.2) 

𝑁𝑚: Number of sputtered particles of species m 
 
𝑁𝑝: Number of primary ion particles that impact the analysis surface 

 
 Sputtering is a damaging process and the goal of this work is to analyze complex 

biological sample surfaces in their most native state. Therefore, it is crucial to know the 

sputter rate for organic materials like cells and tissues. However, it becomes very 

difficult to measure the sputter rates for heterogeneous organic materials. Thus, instead 

of sputter rate the concept of the disappearance cross-section, 𝜎, was introduced with 

the study of organic polymers.54 Due to the bombardment of primary ions over time, 

significant species from the SIMS spectrum will continually decrease in signal, 𝜎 relates 

to the secondary ion intensity by the following equation: 
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  𝐼𝑚 = 𝐼𝑚𝑜𝑒−𝜎𝐼𝑝 (2.3) 
 
𝐼𝑚: Recorded signal of species m 

𝐼𝑚𝑜: Original surface density of species m 

𝜎: Disappearance cross-section 

𝐼𝑝: Primary ion dose 

 The disappearance cross-section can be qualitatively related as the average 

surface area that is damaged during a single primary ion collision. This provides a 

relationship between the disappearance cross-section and can be thought of as the 

damage cross-section within SIMS. As previously mentioned, it is important to maintain 

the integrity of the biological surface to the extent that molecular signals do not begin to 

decrease. This requires analyzing the surface in the “static” regime.  

 SIMS can be separated into two distinct regimes: dynamic and static. Castaing 

and Slodzian initially proposed dynamic SIMS in 1962, where the authors described 

mass selecting secondary ions to analyze all the points of an extended area or a 

secondary ion microscope.55 Dynamic SIMS analyzes ions removed from a sample by 

sputtering through it. Static SIMS, the method used in this research, was developed in 

the late 1960s and 1970s by Benninghoven and his group when they demonstrated the 

use of a low primary particle flux density (<1 nA cm-2) to generate mass spectral data 

and is characteristic of the surface layer.56, 57 The resulting data is considered static 

because statistically a single primary ion only impacts once at any point on the surface. 

To remain within the static SIMS regime Benninghoven calculated that this limit is 

reached at an ion dose of 1013 ions cm-2. Static SIMS instruments are usually equipped 

with a time-of-flight (ToF) analyzer and will be the focus of the instrumentation sections. 

2.2.3 MECHANISTIC MODELS FOR SPUTTERING  

 The attention on the fundamental process of sputtering has resulted in multiple 

theories and models based on the primary ion source and its energy when impacting 

the surface. One of the most common theories is the linear cascade theory which 

models a high energy monatomic primary ion impacting a solid surface as shown in 

Figure 2.1. This model assumes that sputtering occurs by particle bombardment at 
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small incident particle current and fluence. In the theory, the primary ion particle 

transfers its energy to the target atoms at the surface and initiates a series of collision 

cascades between the atoms in the solid. Due to the assumption on the basis of elastic 

collisions, some of these collision cascades return to the surface and cause the 

emission of sputtered particles. Fraser Reich has referred to this as a type of molecular 

billiards, “The cue ball goes into the material, and it sputters−it lifts off material that’s 

characteristic of the top surface.” 58 While this model is accurate for medium-to-high 

energy particle bombardment, it is less accurate for describing lower energy, polyatomic 

primary ions impacting complex organic surfaces such as cells and tissues.  

 It has been suggested that for small molecular ions used in primary ion beams 

(Aun
+, Bin

q+, and SF5
+), the energy transfer can proceed through various modes of 

electronic excitation and is best described as kinetically assisted potential sputtering.18  

Impinging these primary ion beams on the sample surface lead to the assumption that 

overlapping collision events are occurring within the lattice of the sample as a result of 

the same initial collision event. The linear cascade model only assumes the occurrence 

of individual events. The overlap of collisions results as the momentum transfer 

between atoms is constrained to a more localized volume and when multiple atoms 

from the impinging ion beam hit the same region. When these overlapping collisions 

occur on dense substrates additional energy loss can proceed via electronic excitation. 

This excitation results in a localized heat spike with thermal evaporation which produces 

the emission of ions and molecular fragments from the impact area.59, 60 An illustration 

of this model is shown in Figure 2.2.  This model better explains the assumptions that 

are occurring in this work, as Bi3
+ was the primary ion source used for all experiments.  
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Figure 2.2. A simplified illustration of sputtering thought to occur during kinetically assisted potential 
sputtering induced on small primary ion molecular impact. The red shaded area shows the area most 
affected by the impact of the primary ion, with preferential ejection of atoms/ions and fragmented 
molecules within the central region and the ejection of intact molecules from the edges of the shaded 
region.  
 

  Molecular Dynamics simulations are used to provide insight and propose theories 

to understand the sputtering processes resulting from molecular/polyatomic/cluster ion 

impact. One of the leaders in modeling sputtering yields and surface roughness after 

bombardment of cluster primary ions, focusing on C60
+ is Barbara Garrison.61, 62 

Garrison has shown enhanced desorption initiated by C60
+ on multiple surfaces when 

compared to monoatomic ions using molecular dynamic simulations. The essential 

mechanism observed in the simulations show that the kinetic energy of cluster source 

ions is deposited closer to the surface, resulting in less penetration/deposition of the 

cluster ions, higher yields of secondary ions, and shallower craters.61, 63 In summary, 

simulations of small molecular ion impact (e.g. Aun
+, Bin

q+, and SF5
+) demonstrate the 

ejection of atoms/ions and fragmented molecules near the central region of impact and 

the ejection of intact molecules from the halo edges of the impacted surface as shown 

in Figure 2.2. Simulations using large cluster ion impact (e.g. C60
+) show the removal of 

surface molecules due to less sample depth penetration and the deposition of energy 

closer to the surface. 
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2.2.4 IONIZATION 

 The ionization probability (𝛼𝑚
± ) is strongly influenced by the electron exchange 

processes between the departing species (m) and the surface. Therefore, the electronic 

state of the sample surface is critical. In general, the ionization probability for molecules 

in SIMS is not well understood and requires further investigation. The yields of 

elemental secondary ions can vary by several orders of magnitude across the Periodic 

Table, and are dependent of the chemical state of the surface, meaning that signal for a 

specific ion can be suppressed or enhanced due to its chemical environment.53 This 

phenomenon is known as the matrix effect, further complicating the calculation of 𝛼𝑚
± .  

 The formation of secondary ions from organic materials can occur by numerous 

mechanisms.18, 53, 64 Some examples include the ejection of an electron to form an odd 

electron ion M•+, acid/base reactions of polar molecules form (M+H)+ or (M+H)- ions, 

and cationization or anionization of neutral molecules. The secondary ion spectrum also 

shows characteristic molecular fragment peaks of lower masses which provide 

information of chemical structure. Ionization of these species probably occurs via a 

collision induced mechanism as discussed in section 2.2.3.  

 Matrix effects and surface charging also have an effect on secondary ion yields 

from organic materials. Surface charging is the build-up of positive or negative charges 

on the sample surface, which can cause ions of the ejection of opposite polarity ions to 

be slowed. This process leads to a decrease in the detection of secondary ions in the 

areas of the sample experiencing the charging effect. This buildup of charge on an 

insulating, organic sample can be remedied by irradiating the affected sample surface 

region (area being analyzed) with electrons. However, it should be noted that the 

neutralizing electron dose should be minimized, as electron flooding can cause damage 

to the sample over time.65, 66 

2.2.5 MATRIX EFFECTS 

As previously discussed the yield of secondary ions, specifically the ions’ 

ionization probability (𝛼𝑚
± ), is strongly affected by the electronic state of material being 

analyzed and because of this complicates the ability for quantitative analysis. This 
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phenomenon is termed the matrix effect. Therefore, SIMS is considered “semi-

quantitative” as components at the surface or within a material usually cannot be 

determined as a concentration. An example of the matrix effect can be presented as the 

same compound in two different matrices, all other parameters being equal, may have 

different secondary ion yields. This difference is secondary ion yields could be due to 

primary ion impact-induced atomic mixing, segregation, diffusion, and surface 

roughness. Studies performed with rigorous standards have shown that it is possible to 

quantify the amount of a substance in a material, 67, 68 although this is very difficult to do 

accurately for a wide range of samples.  

Secondary ion suppression and enhancement from matrix effects often prevent 

the absolute determination of concentrations of lipids, drugs or biomarkers within 

biological cells and tissues. This is one of the major limitations of SIMS. Relative 

comparisons can be made if the samples’ matrices are similar, i.e. the relative amount 

of a particular lipid species in the plasma membranes of multiple cell types prepared the 

same way. 

 TOF-SIMS INSTRUMENTATION 2.3

There are a number of commercially available and custom built ToF-SIMS 

instruments available for materials analysis.18 The following section will provide a brief 

overview of the major components within a commonly operated ToF-SIMS instrument.  

2.3.1 PRIMARY ION SOURCES  

 Most commercially available ToF-SIMS instruments are equipped with more than 

one ion source and an electron source. In organic analyses, the typical primary ion 

sources used are liquid metal ion guns and electron impact sources, due to the ability to 

provide high spatial resolution and less damage to the surface.  

2.3.1.1 LIQUID METAL ION GUN (LMIG) 

 The liquid metal ion gun (LMIG) sources are used for producing small spot ion 

beams. Sources found in SIMS instrumentation are Ga+, In+, Aun
+ or Bin

q+, where the n 
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(typically 1 through 7) and q (limited to 1 through 3) are integer values representing the 

number of atoms and charge, respectively. Aun
+ and Bin

q+ sources are currently the best 

primary ion sources for obtaining high spatial resolution (HSR) molecular information 

from samples.69 LMIGs produce an ion beam by applying a large electric field directly to 

a thin wire tip that has been heated to create a liquid metal. Ion are then extracted from 

the resulting Taylor cone and focused down the column to the sample. Polyatomic ions 

have been shown to have medium to shallow penetration into the sample, high 

secondary ion yield, and lower residual sample damage when compared to high-energy 

monoatomic sources making them useful for the analysis of biological/organic samples. 

Bin
+ sources have also been shown to have a higher current than that of Aun

+
 sources, 

making it the preferred source for authors performing biological tissue imaging 

experiments.2 For organic materials, spatial resolution is on the order of 100-200 nm.1, 2, 

69 

2.3.1.2 ELECTRON IMPACT SOURCES 

 Electron impact (EI) sources are using for producing inert gas ion beams. Ar+ is 

the most common beam used, but EI sources can also generate O2
+ and SF5

+ beams. 

Current technology and modifications have been able to produce beams such as C60
+ 

and Arn
+, where n can equal up to several thousand.18, 69-73 These sources consist of a 

chamber in which the gas of interest is introduced and then irradiated by electrons. 

These energetic electrons interact with the gas atoms/molecules and induce the 

emission of electrons from these atoms/molecules which results in the formation of 

positively charged ions. These positive ions can then be extracted and used to impact 

the surface with energies ranging from <1−40 keV. 

 The production of larger cluster sources such as C60
+ and Arn

+ requires additional 

hardware within the instrument. A sublimation chamber is used to generate organic 

vapors, which are then irradiated by electrons.  These sources are capable of producing 

beams of up to 40 keV and multiples for doubly and triply charged ion (C60
2+ and C60

3+). 

C60
+ ion beams. Until recently, these sources have not been as useful for high spatial 

resolution imaging as LMIG sources and are typically utilized for their low damage 

sputtering and analysis of organic samples using high primary ion doses. Ar+ cluster 
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ions are produced in a gas cluster ion beam (GCIB) source. The source condenses 

individual atoms into neutral clusters by cooling in a supersonic jet. These clusters are 

then ionized using electron impact. While these large cluster sources are becoming 

more popular in organic and biological analysis due to their ability to provide large 

molecular ions (m/z 500-2000) and less fragmentation, their major drawback is their 

inability to be focused much below ~5 µm.74, 75 Fletcher et al. has shown that it is 

possible to achieve 1 µm resolution with a C60
+

 primary ion beam on organic samples 

using a research-based ToF-SIMS instrument.76 

2.3.2 TIME-OF-FLIGHT ANALYZER 

 A time-of-flight (ToF) analyzer is installed on the ION-TOF V, the instrument used 

in all experiments described in this work. The ToF system analyzes pulses of secondary 

ions that have been accelerated to fixed potential so that all ions possess the same 

kinetic energy. Once accelerated to the same energy, the ions are then allowed to drift 

through a field free space before hitting a detector. As the masses travel through the 

field free region, heavier masses will travel more slowly than lighter masses. A diagram 

of a ToF analyzer is shown in Figure 2.3. As masses impact the detector an ion’s travel 

time can be related to its mass by the following equation53: 

  𝑡 = 𝐿 (
𝑚

2𝑧𝑉
)

1

2
 (2.4) 

𝑡: Measured ion flight time 

𝐿: Flight path length, length of flight tube 

𝑚: Mass of ion 

𝑧: Charge of ion 

𝑉: Accelerating potential  
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Figure 2.3. Diagram displaying a time-of-flight analyzer. Secondary ions are extracted and accelerated at 
the entrance of the analyzer, where they enter a field free drift region. The drift path is shown in a dashed 
red line. Smaller fragment ions travel faster than larger fragments, impacting the detector first, producing 
a mass spectrum as a function of time. The reflectron improves mass resolution by correcting the flight 
distance of ions of the same mass that enter the analyzer with slightly different energies. 
 

 The ToF analyzer is equipped with a reflectron, which uses a time dependent 

electric field in the ion mirror to reverse the directions of the ions entering it. The use of 

a reflectron improves mass resolution by correcting the flight times of ions with the 

same mass that have an initial energy spread when entering the mass analyzer.  

Advantages of a ToF analyzer are its ability to detect all collected secondary ions 

in parallel, at a high mass resolution (m/Δm ~10,000) and a dynamic mass range of 

0<m/z< 10,000.4, 5 This is incredibly important when analyzing biological samples, as 

not all molecules of interest may be known prior to analysis.  

2.3.3 OTHER TOF-SIMS INSTRUMENTS USED FOR BIOLOGICAL SAMPLE ANALYSIS  

 As imaging ToF-SIMS is being utilized more frequently to examine biological 

samples such as cells and tissues, developments within the instrumentation have been 

introduced to accommodate this. The design of the research-based J105-3D Chemical 

Imager instrument by Ionoptika was aimed to provide molecular distributions in three 

dimensions from organic materials with high spatial resolution (~1 µm).76 The J105 also 

provides a glove box so that biological samples may be prepped for frozen hydrated 

analysis and also can utilize a stage capable of freeze-fracturing of frozen cells under 

vacuum.77, 78 As a dynamic SIMS instrument, it pulses the secondary ions into the 

analyzer instead of pulsing the beam which is common on most other ToF-SIMS 

instruments. Due to its modified geometry, this instrument was one of the first with the 
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ability to perform MS/MS imaging experiments.76, 79 MS/MS offers the ability for detailed 

elucidation of biomolecules within cell and tissue sample increasing the confidence in 

the interpretation. Recently, commercial producers of ToF-SIMS instrumentation have 

developed MS/MS capabilities by adding collision cells for selected ions, as 

demonstrated by the PHI nanoTOF II,80 or the addition of a second analyzer, as 

demonstrated by IONTOF’s Hybrid SIMS.81, 82 These developments demonstrate the 

plethora of ToF-SIMS instrumentation dedicated to analysis of biological samples.  

 DATA ANALYSIS USING PRINCIPAL COMPONENTS ANALYSIS (PCA) 2.4

ToF-SIMS generates large complex data sets, especially in organic materials. A 

typical tissue image data set comprised of 1280x1280 pixels, a typical image size in this 

work, accounts for more than 1.6 million spectra. Within each spectrum, there can be 

hundreds of peaks. This presents the challenge of how to process and analyze these 

large data sets accurately. Due to the complexity of the data and challenging nature of 

biological samples, multivariate analysis methods are frequently employed to aid in 

analyzing the data. A method frequently used is principal components analysis (PCA).  

2.4.1 FUNDAMENTALS OF PCA 

 PCA is both a supervised and unsupervised multivariate analysis technique that 

determines the greatest sources of variance within a data set. The input to PCA is a 

matrix where the rows are samples (i.e., spectra) and the columns are variables (i.e., 

peak intensities). It can be considered unsupervised because no other inputs other than 

all peak intensities from a mass spectrum are used to define the correlation. It can also 

be considered supervised if only specific peaks are selected before PCA is applied. 

PCA describes the variance within this input data matrix by determining the directions of 

greatest variation within the data. In this way, PCA acts to rotate the data set onto a 

new coordinate system that better describes the variance within the data set, as seen in 

Figure 2.4.83 The new axes, termed principal components, have been formed by this 

transform are linear combinations of the original variables (ToF-SIMS peak intensities). 

The first principal component (PC1) captures the largest amount of variance in the 

dataset followed by decreasing amounts of variance in following PCs. The two outputs 
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of PCA are the scores, which relate the samples to one another, and the loadings, 

which relate the variables (the peaks) to the data points. 

 

Figure 2.4. Graphical representation of principal components analysis. PCA can be visualized as an axis 
rotation. The PC axes are rotated (B) to capture the greatest directions of variations in the original data 
(A). An overlay of the PC axes and the original axes is shown in (C). This figure adapted from 
https://www.nb.uw.edu/mvsa/general-intro-pca, provided by Daniel Graham. 
 

Sample scores indicate how each sample or individual mass spectrum correlates 

with other mass spectra within the dataset. Similar scores indicate mass spectral 

similarities and can be displayed in a plot or image depending on the original input of 

the sample data. An example of a scores plot showing two data sets, red and blue, with 

88% total variance captured within the first PC is shown in Figure 2.5 (left). It can be 

seen that red samples with positive scores complete separate from the blue samples 

with negative scores across the y-axis. This can be interpreted as the sample sets being 

completely different from each other. The scores also indicate the reproducibility within 

each sample set. The red samples are tightly grouped together and the 95% confidence 

limits, the red bar above and below the samples, are also narrow. This suggests that the 

samples are spectrally similar. The blue samples show more spread between samples 

and have a wide 95% confidence limit. This suggests more spectral variability across 

this sample set.  

Loadings indicate the specific chemical differences observed in the samples 

within each PC. The loadings show the peaks that are correlated with scores 

plots/images, and demonstrate how peaks within the mass spectrum correlate with each 

other. An example of the loadings plot is shown in Figure 2.5 (right). The positive 

loadings (red) in Figure 2.5 correlate with the positive scores (red samples, Figure 2.5, 

https://www.nb.uw.edu/mvsa/general-intro-pca
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right). The mass 58.1 shows a high loadings value for the red samples and is 

associated with being one of the large differences between the red and blue samples. 

The negative loadings correlate with the blue samples. The masses 577.5 and 601.5 

which are present in the blue samples show the largest chemical difference between the 

red and blue sample sets. 

 

 

Figure 2.5. Example of PCA scores (left) and loadings (right). Red samples are observed with positive 
scores (left, y > 0) and correlate to positive loadings (right, y > 0) also colored red. Blue samples are 
observed with negative scores (left, y < 0) and correlate with negative loadings (right, y < 0) also colored 
blue. Colored lines above below samples in scores plot represent the 95% confidence interval. 
 

Typically data is pre-processed by applying scaling, centering, and non-linear 

transformations. In this work, all data is Poisson scaled before any type of PCA is 

applied, either imaging or spectral, as this scales the data to the noise structure of ToF-

SIMS. PCA has found many applications with ToF-SIMS data; however, it is a complex 

analysis technique. Daniel J. Graham, Matthew S. Wagner and David Castner have 

shown many of these applications but have also described many ways to appropriately 

apply this technique to ToF-SIMS data and complex samples.83-85   

 SUMMARY AND APPLICATIONS OF SIMS STUDIES OF CELLS AND TISSUES 2.5

 The first secondary ion images of a biological cell were obtained in the dynamic 

regime, generally using a magnetic sector mass analyzer. At the time only one 

secondary ion species could be analyzed at a time and the process was limited to 
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atomic species. However, Chandra and Morrison used the technique to intracellular 

distributions of ions (i.e. K+, Na+, Mg+, Ca+).86, 87 Chandra and coworkers went on to be 

the first to describe frozen hydrated protocols for SIMS analysis of cells, which has been 

one of the primary methods for cell-based studies.88 Early publications relating to 

cellular and tissue investigations were centered on mapping atomic elements relevant to 

biological activities,89 visualizing the distribution of isotopically labeled additives,90 and 

intracellular drug distributions of cancer drugs containing a characteristic atomic marker 

(e.g. boron).91, 92 

 Static SIMS allows for the detection of intact molecular-type ions from top 

monolayers of the cell. This surface sensitivity makes static SIMS advantageous for the 

analysis of lipids and the lipid membranes of cells. The first study using ToF-SIMS to 

examine biological cells was performed by Colliver et al. in 1997 on a Paramecium.93 

The authors proposed a frozen-hydrated sample preparation technique specifically for 

ToF-SIMS analysis. Even though the secondary ion (SI) yield was low mainly due to the 

use of Ga+ primary ion beam, this work proved the practicality of obtaining molecular 

information from a single biological cell with ToF-SIMS. After this report, studies have 

been published that investigated lipid systems,94, 95 cellular membrane model 

systems,96, 97 and components of cellular plasma membranes.98, 99 

 As the development of preparation techniques for cells and LMIGs improved SI 

yield, publications using ToF-SIMS to image biological samples began increase. In 

2004, Ostrowski et al. used ToF-SIMS to image the changes in the lipid composition 

during the mating of Tetrahymena, a protozoan.100 Using a freeze-fracturing method, 

the authors showed a reduction in the low-curvature lipid phosphatidylcholine (PC) in 

the membrane regions between fusing Tetrahymena and that the fusing region 

contained an elevated signal of a high-curvature lipid, 2-aminoethylphosphonolipid. The 

first attempt to probe the three-dimensional (3D) chemistry of a single cell was 

performed by Fletcher et al. in 2007. The authors used a large cell system, Xenopus 

laevis oocyte, using a 40 keV C60
+ ion beam for sputtering and analysis, identifying 

multiple lipid species and their distribution throughout the cell.101 Studies using smaller 

cells, such as rat kidney and HeLa cells were used to continue pushing the capabilities 

of ToF-SIMS in both 2D and 3D. Breitenstein et al. demonstrated that as each layer was 
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sputtered from the cells using a cluster beam (C60
+) and subsequently analyzed using a 

LMIG (Bi3
+) that the distribution observed in the xz was the vertical inverse of the actual 

distribution.102, 103 This was the introduction to mathematical transformations to correct 

and mirror the real distribution. This was further improved upon by Robinson et al., who 

investigated the sputter rate of individual cells, and designed the ZCorrectorGUI, which 

provided the z-axis correction and 3D visualization within a graphical user interface.104  

 Other applications utilizing ToF-SIMS high sensitivity were used to study cancer 

and characterize metabolic changes in cells. Kulp et al. provided a studying showing the 

practicality of using ToF-SIMS imaging to identify subtle chemical differences to 

differentiate three breast cancer cell lines using multivariate analysis techniques.29 The 

authors also demonstrated that using ToF-SIMS and PCA could identify cellular 

compartments (e.g. cytosol, nuclear, and membrane) from cellular homogenate. Many 

other research groups studied multiple cancer cell lines treated with a variety of 

substances, ranging from drugs to heavy metals.33-35 Other research used multivariate 

analysis techniques to discriminate the chemical differences between malignant and 

non-malignant,31, 32 as well as the lipid metabolism associated with metastatic 

potential.30  

 Cellular studies using ToF-SIMS demonstrates the complexity of data analysis.  

Expanding the technique to tissue analysis increases both the complexity and the 

amount of data to be analyzed. The majority of ToF-SIMS research conducted on 

biological tissues has also been focused on lipids, as these provide high SI yields. Rat 

brain sections have become a well-established model system for ToF-SIMS 

investigations.9, 105-107 Recently, developments in have shown that subjecting rodent 

brains to trifluoracetic acid vapor provides an increased signal and chemical species 

previously unobserved.36 Further investigations have been conducted in lipid-related 

diseases such as Duchenne muscular dystrophy,10, 108 nonalcoholic fatty liver 

disease,109 atherosclerosis,110 and cystic fibrosis.111, 112 The comparison of chemical 

images across healthy and diseased tissue exposes areas of abnormal chemistry and 

can identify the presence or absence of a specific biomarker. For example, Cillero-

Pastor et al. showed that alterations in the localization of cholesterol-related peaks 

provided for a way to distinguish the difference between healthy and osteoarthritic 
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cartilage.11 ToF-SIMS analysis of tissues treated with drugs to observe localization or 

the metabolic changes in tissue after drug administration demonstrate the use of the 

technique for drug discovery.107 Phan et al. found that the distribution and abundance of 

lipids within a common fruit fly’s brain change significantly after the administration of 

methylphenidate, a common treatment for attention deficit/hyperactivity disorder.37  

Cancer tissue studies using ToF-SIMS are also increasing; however, the difficulty 

of acquiring human tissues for viable clinical data is a limiting factor. Prostate cancer,113 

colon cancer,7 and recently breast cancer tissues have been investigated. Angerer et al. 

found evidence of lipids related to inflammatory cell signaling outside of tumors and 

cancerous areas to be dominated by nonessential fatty acids.114 The tissue studies 

presented here show that ToF-SIMS has the potential applicability to study a wide range 

of disease types and provide a new perspective in metabolic analysis.  
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 MATERIALS AND METHODS Chapter 3.

 SUBSTRATES  3.1

 Silicon wafers were used as substrates breast cancer tissue experiments. Silicon 

wafers (Silicon Quest Intl., Santa Clara, CA) were diced using a diamond saw into 2 cm2 

chips.  

 Indium tin oxide (ITO) coated glass slides were used as substrates for mouse 

pancreatic tissue experiments after the initial MYC experiments Chapter 6 were 

conducted. ITO coated glass provides a substrate that can be analyzed by ToF-SIMS 

and subsequently stained for microscopy studies. Boro-aluminosilicate glass slides with 

ITO coated on one surface were purchased from Delta Technologies, Ltd. (Loveland, 

CO) with a surface resistivity of 4-10Ω and a size of 2.5 cm2. All ITO slides were 

cleaned using the protocol detailed within the methods section below.  

 BIOLOGICAL TISSUE SPECIMENS 3.2

 Tissue specimens were immediately embedded in Tissue-Tek® (Fisher Scientific, 

Pittsburgh, PA) optimum cutting temperature (OCT) compound cryopreserved using 

liquid nitrogen and stored in a -80 °C freezer. Frozen tissue blocks were sectioned in a 

cryostat-microtome held at -23°C at the Fred Hutchinson Cancer Research Center 

(FHCRC). Each tissue sample was serially sectioned three times and each section 

ranged from ~5-7 µm in thickness. Tissue sections were obtained from the Fred 

Hutchinson Cancer Research Facility and cryosectioned onto clean 2 cm2 silicon wafer 

chips or 2 cm2 ITO glass substrates. Human breast cancer tissues were cryosectioned 

by Kelly Wirtila and murine pancreatic tissues were cryosectioned by Li Huang. Detailed 

explanations of tissue acquisition and procedures are explained in detail within each 

chapter.   

 SILICON SUBSTRATE PREPARATION 3.3

2 cm x 2 cm chips were immersed in deionized water overnight to remove salts 

from the dicing process followed by 2x five minute sonications in dichloromethane, 
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acetone and methanol (all purchased from Sigma Aldrich, St. Louis, MO) for removal of 

organic contaminants. Wafer chips were then dried with N2, placed in a petri dish 

backfilled with N2 and sealed with Parafilm® (VWR International), and stored in a 

laminar hood until use. 

 ITO SUBSTRATE PREPARATION 3.4

ITO glass slides were cleaned using a 20% by weight solution of ethanolamine 

(≥99%, purchased from Sigma Aldrich, St. Louis, MO) in deionized water, heated to 80 

°C in an ultrasonic bath. Immersion ITO in this solution with ultrasonic agitation for a 

period of 15 minutes will provide for the removal of any fingerprints, body oils or similar 

residual organic contaminants. Following the immersion cycle, the substrates should be 

removed and rinsed several times with MilliQ ultrapure water (18.2 MΩ cm), and blown 

dry N2.  ITO slides were then placed in a petri dish backfilled with N2 and sealed with 

stored in a laminar hood until use. 

 BIOLOGICAL TRANSPORTATION  3.5

The samples were then placed in a petri dish, sealed with Parafilm® (VWR 

International), and transported to the University of Washington for immediate ToF-SIMS 

analysis. Each tissue section was introduced to vacuum within 90 minutes of the tissue 

being cryosectioned.  

 TOF-SIMS ANALYSIS 3.6

 Detailed ToF-SIMS experimental procedures are presented within each chapter. 

The information below details the typical instrument settings used for tissue 

experiments. 

 ToF-SIMS analysis was performed at room temperature. Positive and negative 

secondary ion spectra were collected with an ION-TOF TOF SIMS 5-100 instrument 

(ION-TOF, Münster, Germany), using a pulsed 25 keV Bi3
+ primary ion beam. The Bin

+ 

LMIG is oriented at 45° to the surface normal. The spectra were calibrated using peaks 
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of known mass, and these peaks are presented in each chapter. Low energy electrons 

were flooded onto the sample to compensate for charge buildup on the surface.  

 High mass resolution (HMR) spectra were acquired using Bi3
+. The Bi3

+ current 

was typically 0.15 pA to avoid saturation of salts, phophotidylcholine (C5H15NPO4
+, m/z 

184.07), PO3
- (m/z 78.95), and low mass peaks (<m/z 96). This provides the highest 

mass resolution, typically >5500 at C2H3
+ (m/z 27.02), however, the spatial resolution is 

typically ≥5 µm. The high spatial resolution (HSR) mode was used to collect high spatial 

resolution images using Bi3
+. The current was between 0.03-0.06 pA. In this mode, the 

spectra have nominal mass resolution (masses resolved are analogous to step 

functions) but spatial resolution is much higher than in HMR, typically ≤ 1 µm. All data 

was collected using the IONTOF SurfaceLab 6 software.  

Before all tissue experiments large area images of the entire tissue were created 

by manually stitching individual optical images of 800 µm × 800 µm from the video 

camera within the ToF-SIMS before analysis of each tissue. Each individual optical 

image was obtained by moving the ToF-SIMS stage with 800 µm steps. Typically 3-4 

large patches (approximately 1 mm × 1 mm) were selected for ToF-SIMS analysis 

rather than the entire tissue sample due to the time intensiveness required to analyze 

such large samples, which would lead to degradation during analysis or lipid migration.  

Regions of interest (ROIs) were selected and used for comparison between 

specific tissue regions. These areas were typically selected using principal components 

analysis on ToF-SIMS images. Details of how these regions were selected are 

discussed within their subsequent chapters and heavily in Chapter 4. ROIs were also 

chosen in tissue experiments, but this was based on the distribution of a specific 

secondary ion or a summed set of secondary ions.  

 PRINCIPAL COMPONENTS ANALYSIS (PCA)  3.7

Detailed PCA experimental procedures are presented within each chapter. The 

information provided below is the general application and procedures that were similar 

for all experiments. 

All PCA analysis was performed using the SpectraGUI and ImageGUI software 

(Daniel J. Graham, NESAC/BIO, University of Washington) within MATLAB (Mathworks, 
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Natick, MA). Data used were pre-processed to an appropriate format for the use of 

PCA. Specifically, ToF-SIMS image data were Poisson scaled and mean centered, and 

summed spectral data from individual tile images were normalized to the sum of the 

intensities of all of the peaks in the peak list, square-root transformed, and mean 

centered. 

Regions of exposed silicon or ITO substrate and OCT (e.g. holes or tears from 

cutting tissue and embedding medium surrounding tissue) were excluded from all 

analyses by applying a threshold to the pixels with a Si+ signal, where m/z 27.9 was 

used to detect silicon, m/z 114.9 for In+, and m/z 332.2 (C14H29
+, a fragment of the 

benzalkonium additive in OCT)13  is used to detect OCT areas. Peaks were chosen 

whose maximum intensity was twice or more than that of the average background 

intensity. The spectra from all tissues were overlaid and then peaks were manually 

selected and integrated to full width half max. 

PCA, using the ImageGUI, is first applied to image data formatted as .bif6 files 

from SurfaceLab 6. No peaks are excluded from this data except salts, substrate (Si, Si 

and In containing peaks), and embedding medium (OCT). Normalization was not 

applied to imported image patches; image data were pre-processed by Poisson scaling 

and mean centering before PCA. 

Spectral PCA of tissue data is composed of multiple steps using SurfaceLab 6 

and both the ImageGUI and SpectraGUI (Daniel Graham, NESAC/BIO, University of 

Washington). The data collected as 1 mm × 1 mm stitched image (termed “patches”), 

contains 25 200 × 200 μm2 “tiles.”  Using the SurfaceLab 6 Spectra Program, a mass 

interval list will be created by manually integrating the mass peaks desired for analysis, 

followed by a data reconstruction in the format of .ita to allow for visualization of the 

selected masses. Then, using the SurfaceLab 6 Images Program, all the images can be 

exported in a .bif6 file. The .bif6 files can then be imported into the ImageGUI program 

in MATLAB. When the tile resolution (e.g. 256 × 256 pixels) is input into the ImageGUI’s 

cut up stage raster option, the patch will be diced into is 25 independent tiles. A .txt file 

is generated of the mass intensities within each tile. The .txt from multiple patches and 

samples can be combined for future spectral PCA. If individual tile data is not required 
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and only the intensities of a specific ROI are needed, it is more efficient to use the 

“statistics” option within the SurfaceLab6 Spectra Program.  

 SECOND HARMONIC GENERATION (SHG) MICROSCOPY 3.8

SHG was used to determine if there were any ordered structures (e.g. 

vasculature) and to confirm signals related to collagen observed with ToF-SIMS within 

tissue samples. SHG is restricted to molecules with a non-centrosymmetric organization 

and provides for detailed optical images of fibrillary collagen and has been shown to 

image mixtures of collagens I and III around blood vessels.115 The multiphoton 

excitation fluorescence (MPEF) and SHG images were acquired with a scanning 

confocal multiphoton microscope (Olympus, FV1000 MPE BX61) with a 20x objective. 

The light source was a tunable laser (Spectra-Physics Mai Tai) with λexc at 910 nm and 

with bandpass filters at 495–540 nm for the MPEF channel and 420–460 nm for the 

SHG channel. The detectors were photon multipliers, located so that the SHG captures 

in back-scattering mode and the MPEF in epifluorescence mode. All SHG experiments 

were performed on H&E stained slides. Image data acquired was processed using 

ImageJ software.  
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 ABSTRACT 4.1

Imaging time-of-flight secondary ion mass spectrometry (ToF-SIMS) and 

principal component analysis (PCA) were used to investigate two sets of pre- and post-

chemotherapy human breast tumor tissue sections to characterize lipids associated with 

tumor metabolic flexibility and response to treatment. The micron spatial resolution 

imaging capability of ToF-SIMS provides a powerful approach to attain spatially-

resolved molecular and cellular data from cancerous tissues not available with 

conventional imaging techniques. Three ca. 1 mm2 areas per tissue section were 

analyzed by stitching together 200 μm × 200 μm raster area scans. A method to isolate 

and analyze specific tissue regions of interest by utilizing PCA of ToF-SIMS images is 

presented, which allowed separation of cellularized areas from stromal areas. These 

PCA-generated regions of interest were then used as masks to reconstruct 

representative spectra from specifically stromal or cellular regions. The advantage of 

this unsupervised selection method is a reduction in scatter in the spectral PCA results 

when compared to analyzing all tissue areas or analyzing areas highlighted by a 

pathologist. Utilizing this method, stromal and cellular regions of breast tissue biopsies 

taken pre- versus post-chemotherapy demonstrate chemical separation using 

negatively-charged ion species. In this sample set, the cellular regions were 

predominantly all cancer cells. Fatty acids (i.e. palmitic, oleic, and stearic), 

monoacylglycerols, diacylglycerols and vitamin E profiles were distinctively different 

between the pre- and post-therapy tissues. These results validate a new unsupervised 

method to isolate and interpret biochemically distinct regions in cancer tissues using 

imaging ToF-SIMS data. In addition, the method developed here can provide a 

framework to compare a variety of tissue samples using imaging ToF-SIMS, especially 

where there is section-to-section variability that makes it difficult to use a serial 

hematoxylin and eosin (H&E) stained section to direct the SIMS analysis. 
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 INTRODUCTION 4.2

Mass spectrometry imaging (MSI) is quickly emerging as a key research tool in 

biological research areas such as neuroscience, drug delivery, and cancer.49, 106, 116, 117  

The combination of MS chemical and molecular specificity with imaging capabilities has 

provided a new perspective for biological sample analysis including localization and 

interactions of drugs in cells and tissues,81, 118-121 proteomics,122, 123 and lipidomics.49, 124, 

125 Specifically, the MS imaging technique time-of-flight secondary ion mass 

spectrometry (ToF-SIMS) is a label-free method with micron resolution imaging 

capabilities making it well suited for imaging of cells,33, 104 and key tissue regions.11, 126 

Utilizing the micron lateral resolution of SIMS can be crucial in the process of separating 

regions of interest within tumor microenvironments for cancer research. These 

microenvironments can regulate anticancer activities but can also promote cancer 

progression and provide biological protection which limits therapeutic efficacy and 

delivery.127 By combining micron resolution imaging with molecular information, it is 

possible to observe and begin to interpret potential immune response related metabolic 

events that may associate with cancer progression or regression within the tumor. 

Breast cancer biopsies can vary cellular density as well as percent of cancer cell 

and stroma (connective tissue composed of fat and fibrous tissue) content. Pathological 

assessment is typically performed with histological staining to determine the location, 

type and grade of tumors, but does not always predict patient outcome or response to 

chemotherapeutics.128-133 Stromal heterogeneity and tumor-stroma interactions provide 

prognostic indicators for invasive growth and metastasis.134-137 Previous studies indicate 

that stromal-cancer cell metabolite interchange aids tumor growth and progression.138, 

139 It is hypothesized that the stromal biochemical state may dictate sensitivity to 

chemotherapy.140 However, it is difficult to acquire metabolic data specifically from 

cellular and stromal regions, as these regions can be difficult to isolate for metabolic 

profiling due to the complexity of their spatial distribution. Separating out chemical 

information specifically from the stromal or cellular region can be useful to compare 

chemistries from different tissue areas that contain varying amounts of these specific 

regions. 
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In this study, a combination of ToF-SIMS and multivariate imaging analysis 

techniques are used as an analytical tool to identify chemical variation of specific 

cellular and stromal regions from breast cancer specimens and to compare the 

chemical variation between pre- and post- chemotherapy. We describe different 

analysis methods to isolate and interpret metabolic features of cancer cell regions within 

tissues including pathologist-driven selection of regions of interest (ROIs) using 

hematoxylin and eosin (H&E) stained tissue sections as well as the use of an 

unsupervised imaging MVA method to separate out stromal regions in the SIMS 

images. Herein unsupervised refers both to the fact that principal component analysis 

(PCA) is an unsupervised MVA method (meaning no input other than peak intensities 

are used), and to the fact that by using PCA to select ROIs we demonstrate that one 

can isolate cellular and stromal areas within breast tissue sections and reduce scatter 

within the resulting scores without introducing human bias through hand-selected 

regions. This method further provides improvement to isolate and analyze complex 

regions that consist of either cellular/tumor or stromal regions that cannot be selected 

by hand or the threshold of just one mass spectrometric image. The MVA method of 

PLS-DA has been successfully used to with InfraRed (IR) imaging data to discern 

different regions in breast cancer tissue and identify tumor and non-tumor areas within a 

set of samples.141 However, to our knowledge, the method of using PCA to select ROIs 

for comparing different regions has not yet been applied to ToF-SIMS imaging data. 

ToF-SIMS has been used previously to study diseased tissues and cells with a major 

focus on lipids,6, 11, 32, 108 which are known to contribute and also regulate a range of 

metabolic and biochemical processes within cells. Furthermore alterations in lipid 

metabolism are an indication of carcinogenesis.142 The imaging data in this study is 

specifically used to assess how lipid molecules relate to the differences found between 

tissue samples. One major distinction, however, is that here we compare similar regions 

(e.g. cellular regions) of four different tissue samples to investigate chemical differences 

between untreated tumors and those that have been exposed to chemotherapy 

treatments.33 In addition, the method developed here can provide a framework to 

compare multiple tissue samples using imaging ToF-SIMS when there is difficulty using 

a region of interest marked on a serial (consecutive) section to direct the SIMS analysis 
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due to section-to-section variability. This novel approach utilizes the high lateral 

resolution capability of imaging ToF-SIMS to compare highly specific regions (e.g. just 

tumor cells) from one tissue to another and use spectral PCA to highlight chemical 

differences between those tissue specimens. 

 METHODS 4.3

4.3.1 TISSUE SAMPLE PREPARATION 

Paired pre- and post- chemotherapy biopsy specimens were obtained from 

patients consented according to institutional review board protocols. Both patients 

received standard pre-operative chemotherapy with doxorubicin at 60 mg/m2 IV and 

cyclophosphamide 600 mg/m2 IV on day 1 every 14 days for 4 cycles and paclitaxel 80 

mg/m2 IV weekly x 12 weeks. The patient with ‘Basal Like’ breast cancer received the 

paclitaxel first while the patient with Luminal A breast cancer received the Doxorubicin 

and cyclophosphamide combination first, but the order of therapy is known to not 

substantially affect treatment efficacy. Specimens were immediately embedded in 

Tissue-Tek® (Fisher Scientific) optimum cutting temperature (OCT) compound, 

cryopreserved using liquid nitrogen and stored in a -80 °C freezer. Frozen tissue blocks 

were sectioned in a cryostat-microtome held at -23°C at the Fred Hutchinson Cancer 

Research Center (FHCRC). Each of the four tissue samples was serially sectioned 

three times and each section was ~5 µm in thickness. The first and third sections were 

stained for optical imaging using hematoxylin and eosin (H&E), while the second section 

was analyzed by ToF-SIMS. The second slice of tissue was placed directly on a 2 cm2 

silicon wafer that was previously cleaned with two successive sonications in 

dichloromethane, acetone, and methanol.13  The samples were then placed in a petri 

dish, sealed with Parafilm® (VWR International), and transported to the University of 

Washington for immediate ToF-SIMS analysis. Each tissue was sectioned on a different 

day and the time from tissue cutting to analysis was less than 90 minutes for any 

sample. 
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4.3.2 GENE EXPRESSION SUBTYPE IDENTIFICATION 

Six to nine tissue sections were macrodissected to select regions containing the 

highest proportion of invasive tumor cells to reduce contamination from non-tumor cells. 

RNA was isolated using the AllPrep DNA/RNA Mini Kit (Qiagen Inc., Valencia, CA) and 

gene/transcript expression was assessed using the WG-DASL® (HumanHT-12 v4) 

Assay (Illumina, Inc., San Diego, CA). Data processing and analysis were done in the R 

environment (v3.0.3). The raw expression data were pre-processed and median 

normalized using the Bioconductor lumi package,143  and gene expression intrinsic 

subtypes (Luminal A and Basal-like) were determined using the 50-gene panel 

described by Parker et al.144  with the software Bioconductor genefu package.145  

4.3.3 TOF-SIMS 

 ToF-SIMS experiments were performed using an ION-TOF TOF.SIMS 5-100 

(ION-TOF GmbH, Münster, Germany) equipped with a liquid metal ion gun (LMIG) for 

analysis and an electron flood gun for charge neutralization. The LMIG was used to 

generate a pulsed 25 keV Bi3
+ beam impacting the target at an angle of 45°. The Bi3

+ 

beam was set in spectroscopy mode for high mass resolution (HMR) to acquire spectra 

in both polarities and fast imaging mode to acquire high spatial resolution (HSR) 

negative polarity images. The Bi3
+ current was typically 0.13-0.15 pA for HMR and 0.05 

pA for HSR. Target currents were measured before each data set using a Faraday cup. 

HSR mode images with micron spatial resolution were acquired and compared to 

features found in ToF-SIMS to H&E images. Large area images of the entire tissue 

biopsy were created by manually stitching individual optical images of 800 µm × 800 µm 

from the video camera within the ToF-SIMS before analysis of each tissue. These large 

optical stitched images were then aligned to H&E images using the tissue borders to aid 

in selecting areas where analysis patches were to be acquired. For all data collection, 

HMR positive ion data was acquired followed immediately by HMR negative ion data on 

the same area. X and Y sample stage coordinates were saved in the software to ensure 

data acquired was from the same region in both polarities. HSR images were obtained 

from each sample region after all HMR spectra were completed. In HMR mode, mass 
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resolution (m/Δm) for the C2H3
+ ion was greater than 4500. Positive ion spectra were 

calibrated to CH3
+, C2H3

+, and C4H5
+. Negative ion spectra were calibrated to CH-, OH-, 

and C2H
-.Spectra were acquired from 1 mm × 1mm or 1.6 mm × 0.6 mm “patches” 

comprising of 25 or 24 200 µm × 200 µm “tiles” on each tissue, an example of positions 

is shown in Figure 4.1. Each tile contains 256 ×256 pixels, giving the patches a total 

pixel count of 1280 × 1280. Selecting to analyze three large patches rather than the 

entire tissue biopsy sample was chosen due to the time intensiveness required to 

analyze the samples.  Long analysis times can lead to degradation of lipid signals or 

lipid migration.9, 13  Thus, analyzing three patches results in a timely analysis, providing 

the most relevant and reproducible data of the tissue’s native chemical composition. 

The Bi3
+ dose was limited to ≤5.0×1011 ions/cm2 for each tile in both positive and 

negative ion modes, resulting in a total Bi3
+ dose ≤1.0× 1012 ions/cm2 per tile. 

SurfaceLab 6 software (ION-TOF GmbH, Münster, Germany) was used for all analyses. 

4.3.4 PRINCIPAL COMPONENT ANALYSIS 

 Principal component analysis (PCA) was applied to ToF-SIMS images acquired 

from the tissues using all pixels in the data set (herein referred to as image data and 

displayed as images) and to summed spectral data from individual patches (herein 

referred to as spectral data and displayed as individual data points).  

 Data used in this study were pre-processed for PCA as follows: 1) ToF-SIMS 

image data were Poisson scaled and mean centered, and 2) summed spectral data 

from individual tile images were normalized to the sum of the intensities of all of the 

peaks in the peak list, square-root transformed, and mean centered. Regions of 

exposed silicon substrate and OCT (e.g. holes or tears from cutting tissue and 

embedding medium surrounding tissue) were excluded from all analyses by applying a 

threshold to the pixels with a Si+ signal, where m/z 27.9 was used to detect silicon and 

m/z 332.2 (C14H29
+, a fragment of the benzalkonium additive in OCT)13  is used to detect 

OCT areas. All PCA was performed using the NBToolbox SpectraGUI and ImageGUI 

(Daniel Graham Ph.D., NESAC/BIO, University of Washington), that operate within 

MATLAB (MathWorks, Natick, MA). Peaks were chosen whose maximum intensity was 

twice or more than that of the average background intensity. The spectra from all 
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tissues were overlaid and then peaks were manually selected and integrated to full 

width half max. All peaks below m/z 920 were selected, excluding known salt, salt 

adduct, substrate and inorganic peaks. A total peak list of 846 and 807 peaks were 

chosen from the positive and negative ion modes, respectively. All peaks in the list were 

used for image PCA analysis while spectral PCA was limited to peaks with m/z above 

200 resulting in 391 and 329 peaks for the positive and negative ions peak lists, 

respectively.  

 PCA, using the ImageGUI, is first applied to image data formatted as .bif6 files 

from SurfaceLab 6. No peaks are excluded from this data except salts, substrate (Si 

and Si containing peaks), and embedding medium (OCT). Normalization was not 

applied to imported image patches; image data were pre-processed by Poisson scaling 

and mean centering before PCA.  

The presence of large fatty acid droplets, observed as well defined high intensity 

areas of C16:1 (C16H29O2
-, palmitoleic acid, m/z 253.2),14, 109 C16:0 (C16H31O2

-, palmitic 

acid, m/z 255.2),109, 146 C18:2 (C18H29O2
-, linoleic acid, m/z 279.2),10, 109 C18:1 

(C18H33O2
-, oleic acid, m/z 281.2),109, 146 and C18:0 (C18H35O2

-, stearic acid, m/z 

283.2),30, 109, 125, 146  were occasionally observed in different tissue sections. The strong 

signal from the fatty acid droplets would dominate PCA and the main variability between 

the samples would then be related to fatty acid droplets present in that particular tissue 

slice. Therefore, the fatty acid droplets were removed prior to PCA as manually selected 

ROIs of the tissue image data, using the polyline function within SurfaceLab 6, so 

sample comparison could be focused on specific tissue regions. Droplets were easily 

identified in images as localized areas with characteristic fatty acid peak intensities at 

least 5 times that of the fatty acids distributed within the remaining tissue section. It is 

important to note that breast tissue is a fatty tissue, therefore the prevalence of fatty 

acid droplets within tissue sections can vary. Analysis of other types of tissues (i.e. 

brain, heart, and liver) may or may not contain these droplets.105, 109, 146, 147 When 

analyzing chemical variances between patients or within one patient, including the fatty 

acid droplets present in breast tissue could cause misinterpretation data due to the 

variability of droplet presence (i.e. if there happened to be a droplet in that particular 

biopsy sample and/or section). 
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Scores images that corresponded to cellular and stromal areas from serial H&E images 

were selected to be used as masks. Using SurfaceLab 6, scores images were imported 

and spectra reconstructed by applying a 10% minimum, 90% maximum signal threshold 

to the pixels within the selected score image. The resulting data, in .bif6 format, were 

imported back into ImageGUI and the patch parsed into individual 200 µm × 200 µm 

tiles, shown in Figure 4.1C, where each tile represents one data point in the spectral 

PCA plots. The parsed data was then imported in .xlsx format into SpectraGUI for 

spectral analysis, where each individual tile represents one data point in the PCA 

scores plots. Imported data were normalized to the sum of the intensities of all of the 

peaks in the peak list, square-root transformed, and mean centered prior to spectral 

PCA.  

 

Figure 4.1. (A) Chart of H&E stained images for pre and post chemotherapeutic treated tissues of 
Luminal A type and Basal-like from two patients (B) An increased magnification optical H&E stained 
image of a selected analysis region. (C) Summed CN

-
 and CNO

-
 ion image from the ToF-SIMS analysis 

region corresponding to (B) showing the 25 200 × 200 µm tiles comprising of one stitched patch. White 
regions seen in the tissue slices can indicate either tears or (most typically when round) fatty acid 
droplets. All scale bars represent 1 mm. 
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 RESULTS AND DISCUSSION 4.4

Paired pre- and post- chemotherapy tissue samples from two patients were acquired 

for a total of 4 tissue samples. The hematoxylin and eosin (H&E) stained sections for 

the 4 tissue samples are shown in Figure 4.1A and Figure 4.1B. The hematoxylin stain, 

blue color, indicates the cellular nuclei while eosin stains the stromal or connective 

tissue in a lighter pink color. Three stitched patches (as described in Figure 4.1) were 

taken per tissue for a total of 12 stitched patches. Each of the breast cancer specimens 

were classified into gene expression intrinsic subtypes.144 The first pre/post-therapy 

specimen pair was classified as a Luminal A breast cancer, characterized by having 

genetic expression patterns similar to the luminal epithelial component of the normal 

breast.128, 148 Generally, the Luminal A cancers are estrogen receptor (ER) and 

progesterone receptor (PgR) positive, and human epidermal growth factor receptor 2 

(HER2) negative with lower expression of proliferative genes. The second pre/post-

therapy tissue pair was classified as a Basal-like breast cancer. The Basal-like subtype 

typically lacks expression of ER, PgR, and shows low or no HER2 expression. Basal-

like tumors are characterized by an expression pattern corresponding to that of the 

basal epithelial cells in the normal breast and body and highly express proliferation 

genes.128, 148 

 In order to ascertain chemical differences between pre- and post- chemotherapy 

tissues, PCA was used to analyze ToF-SIMS spectral and image data. Three different 

methods are used to acquire information from different ROIs from different tissue slices. 

Specifically, (1) using the spectral data from all patches within the region imaged from a 

given tissue, (2) using regions indicated by pathologist on a H&E stained slice image 

and (3) using the spectral data from all patches after generating ROIs using imaging 

PCA. The negative polarity ion data showed the best correlation between the pre and 

post chemotherapy treatment samples and thus is used to compare the spectral PCA 

results generated from the three different ROI methods. The positive ion PCA results 

did not show separation that correlated with pre- and post-chemotherapy treatment 

regardless of the method used. The positive polarity data are presented and discussed 

using the last method only.  
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4.4.1 MVA OF ALL PATCHES 

As detailed in the methods section, each analysis patch was separated into 

individual tiles after removal of substrate, embedding medium, and large fatty acid 

deposits, followed by the application of PCA. The spectral PCA results from the 

negative ion polarity data with peaks above m/z 200 (key m/z values, deviations, and 

proposed biological molecule are shown in (Supplemental Table S.4.1) of the entire 

stitched patches (both pre and post for both tissue types) are shown in Figure 4.2. The 

lines above and below the data points indicate 95% confidence intervals. PC1 data (not 

shown) indicates slight separation between tissues from the two patients, rather than by 

pre- and post-therapy possibly identifying person-to-person chemical variation. In PC2, 

it is noticeable that the post-therapy tissues do indicate a trend with higher scores, 

which correspond to a high loading value of fatty acid C16:0 (C16H31O2
-, palmitic acid, 

m/z 255.2), while the pre-therapy tissues trend with lower score values, corresponding 

to the strongest negative loading peak of Vitamin E (C29H49O2
-, m/z 429.3)10 and fatty 

acid C18:1 (C18H33O2
-, oleic acid, m/z 281.2). Using the entire patch as a region of 

interest, the scores exhibit a large spread between the 95% confidence intervals 

signifying a high amount of variability within each patch as well as for different patches 

within the tissue. It is possible that the large variability may be due to comparison of the 

entire tissue areas rather than comparison of specific tumor features within the analysis 

patch.  
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Figure 4.2 (A) PC2 scores plot generated from whole patch data using the negative ions m/z > 200. (B) 
PC2 shows an overall variance of 13%. Pre chemotherapeutic tissues shown as blue colored and cyan ●, 
post chemotherapeutic tissues shown as colored magenta and red. The lines above and below the data 
points indicate 95% confidence intervals. 

4.4.2 MVA ANALYSIS OF H&E DRIVEN ROI SELECTIONS 

Due to the heterogeneity and complexity of the sample, a second type of ROI 

selection was performed to focus on pathologist-recommended regions, e.g. high 

density of cancer cells, from the serial H&E slice. These regions are outlined in light 

blue in the H&E and black in the ToF-SIMS summed image of CN- and CNO- (Figure 

4.3A and Figure 4.3B), to provide a guide for a more accurate ToF-SIMS spectral 

comparison between cancer cell regions or “cancer cell nests” and stromal regions. 

Supplemental Figure S.4.1 shows the pathologist-selected areas on the H&E images for 

all four tissues.  

It can be noted (in Figure 4.3) that the H&E image of the tissue that was 

examined by the pathologist is not identical to the ToF-SIMS image. This is not 

surprising since there is at least a 5 µm difference between these serial sections 

(including the section thickness and frost buildup on the tissue sample prior to the 

slicing of the next section). 
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Figure 4.3. (A) An example of an analysis patch at higher magnification with pathologist selected areas 
on the H&E (blue) (B) Pathologist selected areas (black lines) projected onto sum ion image of CN

-
 and 

CNO
-
 (m/z 26.0 and 42.0) (C) Representative ion image of tiles removed, shown in black, prior to PCA. All 

scale bars are 200 µm. 

 

In an effort to develop a minimally time consuming process, a rough estimate of the 

pathologist-selected areas were used, meaning that only tiles that primarily 

corresponded with pathologist-selected areas were selected for the analysis (Figure 

4.3C). The results using PCA on this more selective region of interest are shown in 

Supplemental Figure S.4.2. Comparing the method of a selective region to whole spot 

analysis (Figure 4.2), it can be seen that the percentage of variance of PC2 as well as 

the loadings peaks look similar for both types of ROI analyses. However, the scores 

separation between the pre- and post-therapy specimens from the Basal-like cancer are 

no longer observed while the pre and post specimens from the Luminal A cancer now 

show a clearer separation. While a hand drawn ROI to attempt to directly select the 

regions selected by the pathologist may have slightly improved these results, the 

section-to-section variability noted during the analysis likely plays the major role in 

incorrectly selecting the ROIs on the ToF-SIMS image(since the regions of interest on 

the pathology section may not match those on the ToF-SIMS section). For example, the 

image shown in Figure 4.3 has a large, obvious stromal feature (large pink region), 

while other tissue sections such as the Basal-like post chemotherapy tissue 

(Supplemental Figure S.4.1) had very small, well separate regions that were difficult to 

correlate and identify on the ToF-SIMS image. This difference in separation could be 

due the following; (1) large stromal areas excluded by the pathologist in the Basal-like 

post-chemotherapy tissue, (2) small distributed cellular areas included by the 

pathologist within the Basal-like pre-chemotherapy tissue, (3) lowering the number of 
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tiles used in PCA, and (4) larger cellular areas comprised of more tiles included by the 

pathologist within the Luminal A cancer tissues. 

4.4.3 VARIATIONS IN SERIAL TISSUE SLICES 

Composition and localization of cellular areas within a tumor vary as you move 

serially through a tissue block. This variability increases the complexity of choosing the 

ToF-SIMS analysis region of a tissue section by comparing to a region from a serial 

section. Figure 4.4 illustrates an example of the heterogeneity between the three serial 

5 µm sections. For accurate spot location on each section, images were aligned by 

overlay at the same magnification and approximate spot location boxed. In Figure 4.4A 

and Figure 4.4D, the initial H&E section reviewed by the pathologist, a circular structure, 

noted by a black arrow, is present within the 1 mm x 1 mm analysis area. It can also be 

seen that in Figure 4.4A there is not a substantial amount of cell nuclei (blue stain) 

populating the region. Figure 4.4B and Figure 4.4E shows the ToF-SIMS stitched 

microscope camera image and the summed CN- and CNO- HSR image acquired. Figure 

4.4C is the serial section cut after the ToF-SIMS section. The higher intensity region in 

the center of the ion image (Figure 4.4E) is indicative of the stromal region whereas the 

lower intensity regions indicate cellular regions (with the exception of the area with no 

signal in the lower left area of the image which is due to fatty acid droplets). Comparing 

all the images in Figure 4.4 it can be seen that the ToF-SIMS image in Figure 4.4E is 

more similar to the H&E image in Figure 4.4F, but still has some differences highlighting 

the difficulties in using serial sections to choose analysis regions as certain structures 

vary in depth. 
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Figure 4.4. Optical and ToF-SIMS camera and ion images showing the heterogeneity between serially 
cut tissue sections for the entire section and at a specific 1mm × 1mm analysis area, outlined in black. (A) 
Initial Section 1, an optical H&E stained section before the ToF-SIMS section. (D) H&E optical image at 
an increased magnification of a selected analysis region. Black arrow shows circular structure that 
becomes absent after this section. (B) Section 2, used for ToF-SIMS analysis. ToF-SIMS microscope 
stitch. (E) Summed ion image of CN

-
 and CNO

-
 does not display similar structure as observed in (D). (C) 

Section 3, H&E made directly after the ToF-SIMS section. (F) Increased magnification optical H&E 
stained section of selected region displaying a more analogous structure to (E). Scale bar in D-F 
represents 200 µm. 

4.4.4 MVA USING UNSUPERVISED SELECTION OF REGION SPECIFIC ROIS BY PCA 

H&E-stained serial tissue sections do not necessarily show the same areas of 

interest as the ToF-SIMS analysis section and, as shown in the previous two methods, 

the amount of cellular and stromal area in the analysis area may dominate the PCA 

separation. Therefore, a different method must be developed to focus on tissue areas of 

interest that can provide tissue to tissue slice comparisons. Additionally, there is interest 

in comparing specific regions from different tissue samples (for example comparing only 

cellular regions from two different patient biopsies). While the tissue shown in Figure 4.3 

had a rather prominent stromal feature, making it relatively simple to separate out major 

stromal areas from the cellular areas, many of the tissue sections had less prominent 
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stromal features making it more difficult to use a coarse method to precisely separate 

out the stromal and cellular areas. In order to more precisely separate the stromal and 

cellular areas of the tissue, PCA was applied to the image data of each patch with an 

m/z 0 –920 peak list. The low mass peaks, such as CN- and CNO-, were previously 

shown to be indicative of stromal regions (e.g. Figure 4.3B) and would aid in separation 

of these areas.  

 

Figure 4.5. Negative ion image PCA results with a variance of 0.66% from an example patch. (A) Positive 
scores image showing the isolation of cellular regions. (B) Positive loadings that display the chemical 
species identified within (A) the cellular scores image. (C) Negative scores image or the stromal region. 
(D) Negative loadings showing the chemical species identified within the stromal region. The cellular and 
stromal regions can be distinguished from the H&E stained image presented in Figure 4.3A. Image 
contrast was enhanced for clearer presentation for publication. Scale bars represent 200 µm. 

 

In Figure 4.5, principal component 2 image scores (Figure 4.5A and Figure 4.5C) 

and loadings (Figure 4.5B and Figure 4.5D) produced from image PCA demonstrate the 

separation between cellular (Figure 4.5A and Figure 4.5B) and stromal regions (Figure 

4.5C and Figure 4.5D), which can be visually seen to correspond with the cellular and 

stromal structures visible in adjacent H&E-stained sections as seen in Figure 4.3A. 
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Again, the tissue section with the most prominent stromal feature is chosen to 

demonstrate the utility of this method to separate out stromal features. In this particular 

sample, PC1 separates the presence of a fatty acid droplet and regions exhibiting 

vitamin E (shown in Figure 6C) from the remainder of the image, which is dominated by 

high loading peaks of CN- and CNO- and other low mass fragments (not shown). In 

tissue samples where fatty acid droplets are not present, the separation between 

cellular and stromal is found in PC1.  

The PC2 loadings plot for this patch exhibit high negative loadings for CN- ,  

CNO-, and the fatty acids C18:2 (C18H29O2
-, linoleic acid, m/z 279.2) and C18:1 

(C18H33O2
-, oleic acid, m/z 281.2). These negative loading masses can be associated 

with the negative PC2 scores image analogous to the stromal region of the tissue. The 

high negative loading of the fatty acid peaks could be due to the fatty acid droplet 

located at the left edge of the patch, visible as a high intensity region in the negative 

PC2 scores image. The composition of these fatty acid droplet regions, which appear as 

white (un-stained) ‘holes’ in the histology image, are easily identified with ToF-SIMS 

imaging. Consistent trends generated by image PCA observed from the loadings plot 

show CN-, CNO-, and PO3H
- (m/z 79.9) loading in the direction of the stromal region 

scores. 

The positive loading masses can be associated with the positive PC2 scores 

image, which is indicative of the cellular regions within the tissue sample. General 

trends observed while using image PCA indicated that cellular areas consistently had 

higher relative intensities of fragments related to vitamin E (C10H11O2
-, m/z 163.1 and 

C29H49O2
-) and phosphoinositol (C9H16PO9

-, m/z 299.05).149 Due to the section-to-

section variability in the samples, several cellular domains were revealed in the imaging 

PCA analysis of the tissues that were not visible in the histology images. 

The scores images that were representative of cellular and stromal areas were 

used to create an ROI threshold “mask”, to extract the imaging mass spectral 

information specifically from stromal and cellular regions. Figure 4.6 demonstrates the 

process used to create specific cellular and stromal ROIs using the image PCA scores 

as masks. First, the representative cellular and stromal scores images are scaled to 

equal the same number of pixels acquired in the ToF-SIMS image (Figure 4.6A and 
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Figure 4.6B). As previously discussed in the methods section, breast tissue is a fatty 

tissue and the presence of fatty acid droplets may vary section-to-section and between 

patient specimens. When comparing the chemical variance between one patient or 

many, it is important that the data is not misinterpreted by the presence or absence of 

fatty acid droplets in a particular specimen. Before the mask is applied, fatty acid 

droplets must be removed from the scores image or the results from spectral PCA will 

be heavily influenced by their presence or absence when comparing sample 

chemistries. The droplet can be verified by viewing the raw data images. Fatty acid 

droplets generally separated from the tissue sample and are typically visible in PC1 

scores (Figure 4.6C, white arrow). In order to remove the fatty acid droplets from these 

data sets, PC2 can be overlaid with PC1 and the fatty acid droplet area can be 

subtracted from the PC2 scores image. Once the droplet area has been removed new 

cellular or stromal images can be generated. These new images can then be applied as 

ROI masks as previously described. An example of completed masks is shown in teal in 

Figure 4.6D and Figure 4.6E.   
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Figure 4.6. Image PCA mask workflow. Using the scores images that isolate the cellular (A) and stromal 
(B) areas and subtracting fatty acid (FA) droplets (C), if present within the sample, region specific 
threshold masks (D and E) can be generated. Images can then be reconstructed to contain only spectra 
representative of the (D) cellular or (E) stromal regions. All scale bars are 200µm. 
 

After spectra were reconstructed using either the cellular or stromal ROI masks, 

the ROI patch areas were subjected to the same process, parsing the patch into tiles for 

individual data points and followed by spectral PCA of the tiles as was done in the 

previous datasets. Figure 4.7 shows the resulting spectral PCA scores and 

corresponding loadings plots for PC2 of the reconstructed tiles of the cellular regions 

identified by image PCA. The scores trends are similar to those seen in PC2 scores of 

the pathologist-selected areas (Supplemental Figure S.4.2A) as well as the analysis of 

the entire patch (Figure 4.2).  
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Figure 4.7. Spectral PCA results of cellular/tumor areas between tissue samples using image PCA masks 
to reconstruct only cellular/tumor regions for each tissue. (A) PC2 scores generated using PCA masks 
using the negative ions m/z > 200. (B) Loadings plot displaying the chemical species that correspond to 
PCA mask analysis scores. This method provides the best separation between the samples when 
compared to the previous methods, capturing 13% of the total variance. Pre-chemotherapy tissues shown 
as blue colored  and cyan ●, post-chemotherapy tissues shown as colored magenta  and red . 
 

As with the previous analysis methods, the post-therapy tissues have positive 

scores values and the pre-therapy tissues have negative scores. However, when data 

specifically from the cellular regions of the images are compared, the spread of the data 

between the confidence intervals is reduced. The loadings plots for PC2 in Figure 4.2B 

and Supplemental Figure S.4.2B are also similar to the loadings plot seen in Figure 

4.7B, where saturated fatty acids C16:0, C18:0 (C18H35O2
-, stearic acid, m/z 283.2) and 

fragments of possible sphingomyelin (C34H67NO6P
-, C36H69NO6P

-, C38H76N2O6P
-, 

SM(34:1), m/z 616.5, 642.5, 687.6 respectively)109 have positive loadings, while vitamin 

E and the unsaturated fatty acid C18:1 load negatively, indicating different chemical 

profiles for cellular regions within pre/post-therapy tissues. Key differences, however, 

include little to no contribution from PI fragments or C14. The PC1 vs PC2 scores plot 

and corresponding loading plots (Figure 4.8) for the cellular specific ROIs shows both 

the separation between pre- and post-chemotherapy tissues on PC2 as well as some 

separation between the Basal-like subtype and Luminal A subtype tissues across PC1. 

There is large variability in the Luminal A pre-chemotherapy tumor tissue, where the 

confidence interval slightly overlaps both post-chemotherapy tissues. However, both the 

pre and post-chemotherapy Luminal tissues have largely negative scores on PC1, while 
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the Basal-like tissues have largely positive scores. Phosphoinositol fragments (C6H1-

PO8
-, m/z 241.01, and C6H12PO9

-, m/z 259.02) and C18:0 trend with Luminal type 

tissues while C14:0 (C14H27O2
-, m/z 227.2), C16:0, and C18:1 fragments are correlated 

with the Basal-like type tissues. 

 

Figure 4.8. (A) PC1 vs PC2 scores using image PCA masks to reconstruct the cellular/tumor regions 
using negative ions m/z > 200. (B) PC1 loadings plot displaying the chemical species that correspond to 
PC1 scores (x-axis) (C) PC2 loadings plot displaying the chemical species that correspond to PC2 scores 
(y-axis). Pre-chemotherapeutic tissues shown as blue colored  and cyan ●, post-chemotherapeutic 
tissues shown as colored magenta □ and red . 
 

Supplemental Figure S.4.3 shows the PCA scores and corresponding loadings 

plots of PC2 comparing the stromal regions of the samples in the negative polarity. 

Phosphoinositol fragments, C18:1, and vitamin E trend to be associated with the pre-

chemotherapy samples. Where C14:0, C16:0, C18:0, and sphingomyelin fragments are 

correlated with the post-chemotherapy samples. The 95% confidence intervals have a 

wider spread for stromal region data than was seen for the cellular region data, 

however, a trend is still noticeable within the stroma data indicating that differences 

between pre- and post-chemotherapy samples can be found in the stromal as well 

cellular regions.  

 As was noted previously for ToF-SIMS investigation of breast cancer cells, the 

negative polarity ions provide the ability to observe distributional changes of fatty acids 

and intact lipids, while the positive data has been shown to provide the ability to observe 

changes in mono and diacylglycerides.30 While PCA analysis of the pre- and post-
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chemotherapy tissues using negative polarity ions similarly shows a trend in the scores 

related to fatty acids and lipids, the positive ion data results in more overlap of the 

scores 95% confidence intervals than found for the negative ion data. This is best 

shown in Supplemental Figure S.4.4 where PC2 vs PC4 scores and corresponding 

loadings are shown for the positive ion data. There is near separation between the 

pre/post Basal-like samples in PC2, but separation between the Luminal A pre/post 

samples is not observed until PC4.  In summary, there does not appear to be a trend in 

the loadings peaks for the pre- and post-therapy tissues using positive ions, indicating 

that any changes in the mono and diacylglyceride content as a result of chemotherapy 

are not consistent across tissue types. 

 CONCLUSIONS 4.5

Current cancer research has indicated, primarily through gene expression data, 

that specific microenvironments in breast tumors may provide signals and nutrients to 

promote cancer cell survival and/or chemoresistance.135, 136, 150 However, due to the 

heterogeneity of human breast cancer tissues, it remains difficult to acquire supportive 

metabolic data to aid in understanding tumor gro wth and treatment efficacy.  The 

regions of interest (ROIs) selected for such molecular characterization require micron-

level lateral resolution. Here we show that imaging ToF-SIMS can be used to chemically 

identify distinct tissue regions in tumors with high lateral resolution. In this work, we 

have presented an unsupervised methodology for isolating and analyzing specific tissue 

regions providing a way to compare similar regions in multiple tissue slices. These 

results demonstrate that the combination of imaging ToF-SIMS and image principal 

component analysis (PCA) can be used as an unsupervised method to select distinct 

ROIs within tissues. Comparisons are made using the entire analysis regions as well as 

hand-selected ROIs. When different tissue samples are compared using imaging PCA-

driven ROIs there is less spread in the PCA scores. An advantage of using the imaging 

PCA-directed method is that it allows for like regions to be compared in spectral PCA 

and thereby improves chemical separation when multiple tissue samples are compared. 

Here four different tissue sections from two different patients before and after 

chemotherapy were compared using the negative ion ToF-SIMS data and PCA-driven 
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ROI selection. Trends are found for tissues breast cancer specimens that were taken 

before chemotherapy treatment (pre) and those taken from the same patient after 

treatment (post). From the spectral PCA results it is seen that the unsaturated fatty 

acids C16:0 and C18:0 and sphingomyelin correspond with the post-chemotherapy 

tissues. Deficiency of sphingomyelin is thought to be related to the disruption of 

apoptosis in highly invasive cancer cells,151 therefore an increase in intensity in the 

post-treated samples compared to the pre-treated may correlate with treatment 

response of the patient. C16:0 has been shown to generate apoptotic signals, some 

related to sphingolipids.152 Conversely, overexpression of fatty acid synthase in breast 

cancer, which is responsible for the synthesis of C16:0, has been shown to contribute to 

drug resistance.153  

Vitamin E and the unsaturated fatty acid C18:1 correspond with the pre-

chemotherapy tissues in the PCA analysis. Vitamin E may provide strong antioxidant 

protection of cancer cells from lipid peroxidation, facilitating tumor growth when in the 

presence of reactive oxygen species (ROS).154 That the vitamin E signal corresponds to 

the pre-treated and not the post-treated tissues is consistent with several studies that 

have shown that chemotherapy and radiation therapy are associated with increased 

formation of reactive oxygen species and depletion of critical plasma and tissue 

antioxidants.155, 156 The C18:1 oleic acid is known to prevent cytotoxicity and decrease 

mitochondrial superoxide production induced by C16:0 palmitate.157 This provides a 

possible explanation for the trends seen within the pre-chemotherapy treated tissues for 

both C18:1 and vitamin E.   While these findings require further experimental 

investigation to gain a concrete understanding in cancer biology, the results 

demonstrate the utility of PCA-driven ROI selection of ToF-SIMS data to compare 

metabolic trends of specific regions across multiple patients and tissue sections. 
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Supplemental Table S.4.1. Key negative and positive ion m/z fragment identification for peaks observed 
in PCA. 
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Supplemental Figure S.4.1.Optical H&E images showing the pathologist directed ROIs in blue. These 
regions were reconstructed and compared using spectral PCA for the results presented in Supplemental 
Figure S.4.2. All scale bars represent 1 mm. 
 

 
 

 

Supplemental Figure S.4.2. (A) PC2 scores generated from pathology driven analysis by tile removal for 
ion m/z > 200. PC2 shows an overall variance of 13%. (B) PC2 loadings displaying chemical species that 
correspond to scores from pathology driven analysis. Pre-chemotherapeutic tissues shown as blue 
colored  and cyan ●, post-chemotherapeutic tissues shown as colored magenta  and red .  
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Supplemental Figure S.4.3.Spectral PCA results of negative polarity stromal areas between tissue 
samples using image PCA masks to reconstruct only stromal regions for each tissue. (A) PC2 scores 
generated from PCA masks using negative ions m/z > 200. (B) Loadings plot displaying the chemical 
species that correspond to scores from PCA mask analysis. The heterogeneity of the stromal regions can 
be seen within the figure, possibly denoting that stromal regions can change when located near dense 
tumor regions. Pre-chemotherapeutic tissues shown as blue colored  and cyan ●, post-
chemotherapeutic tissues shown as colored magenta  and red . 
 

 
Supplemental Figure S.4.4. Spectral PCA results of positive polarity cellular/tumor areas between tissue 
samples using image PCA masks to reconstruct only cellular/tumor regions for each tissue. (A) PC2 vs 
PC4 scores using image PCA masks to reconstruct the cellular/tumor regions using positive ions m/z > 
200. (B) PC2 loadings plot displaying the chemical species that correspond to PC2 scores(x-axis) (C) 
PC4 loadings plot displaying the chemical species that correspond to PC4 scores (y-axis). Pre-
chemotherapeutic tissues shown as blue colored  and cyan ●, post-chemotherapeutic tissues shown as 
colored magenta  and red . 
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 ABSTRACT  5.1

Breast cancer is a complex and heterogeneous malignancy, encompassing 

multiple tumor forms associated with varying histological types and clinical outcomes. 

Profiling breast cancer with expression arrays is common, which can reveal biomarkers 

that potentially aid patient treatment efficacy. However, the positive predictive capability 

is limited, as many patients possess de novo resistance or acquire resistance to certain 

chemotherapeutics. Therefore, investigating the metabolic changes within breast cancer 

tissue could potentially lead to new therapeutic targets and revealing the chemical 

profile of chemoresistance. In this work, imaging time-of-flight secondary ion mass 

spectrometry (ToF-SIMS) was used to acquire chemical image data from 23 pre-treated 

breast cancer tissue biopsies. Principle components analysis (PCA) was applied to both 

ToF-SIMS images to isolate cellular and stromal regions within patient samples. Using 

these PCA generated masks, it is possible to compare specific regions across many 

patients, identifying key chemical differences these clearly defined regions. Comparing 

ToF-SIMS cellular and stromal region data from specific subtypes, e.g. triple negative, 

has shown promise in defining chemical differences between patients that respond to 

chemotherapy and those that do not. Characterization of ductal carcinoma in situ 

(DCIS) tumor containing tissues using ToF-SIMS and PCA determined the spatial 

distribution of specific amino acids and nucleobases within the tumor and collagen 

structures surrounding tumors.   
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 INTRODUCTION 5.2

Breast cancer is a complex and heterogeneous malignancy, encompassing 

multiple tumor forms and subtypes, some of which are very aggressive, difficult to 

detect, and do not respond to treatment.158 Pathological assessment is typically 

performed with histological staining to determine the location, type and grade of tumors, 

but does not always predict patient outcome or response to chemotherapeutics. Genetic 

profiling breast cancer with expression arrays is common, which can reveal biomarkers 

that potentially aid patient treatment efficacy.159 However, the positive predictive 

capability is limited, as many patients possess de novo resistance or acquire resistance 

to certain chemotherapeutics.160 Stromal heterogeneity and tumor-stroma interactions 

provide prognostic indicators for invasive growth and metastasis.134-137 Previous studies 

indicate that stromal-cancer cell metabolite interchange aids tumor growth and 

progression.138, 139 It is hypothesized that the stromal biochemical state may dictate 

sensitivity to chemotherapy.140
 However, it is difficult to acquire metabolic data 

specifically from cellular and stromal regions, as these regions can be difficult to isolate 

for metabolic profiling due to the complexity of their spatial distribution. 

Using an unsupervised method multivariate analysis technique applied to time-of-

flight secondary ion mass spectrometry (ToF-SIMS)161 images, selecting chemical 

information specifically from the cellular or stromal regions of tumor tissue samples can 

be achieved with micron-level lateral. This method has been utilized to compare the 

chemistries different tissue slices.   

ToF-SIMS has been previously used to study diseased tissues and cells with a 

major focus on lipids, such as Duchenne muscular dystrophy10, osteoarthritic cartilage 

tissue11, and Alzheimer brain tissues12. In each of these studies unique lipid profiles 

were determined which distinguished the diseased from the healthy tissue. Alterations 

within the lipid metabolism are also known as a hallmark of carcinogenesis.162, 163 

Recent research using ToF-SIMS imaging to analyze breast cancer sections 

demonstrated its potential in analyzing the lipids in the cancerous microenvironment.114  

This work focuses on utilizing distinct cellular and stromal regions of interest 

(ROIs) generated from principle components analysis (PCA) of ToF-SIMS images to 
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compare multiple human breast cancer biopsies. PCA was then be applied to the 

specific ROIs providing the chemical variance between breast cancer biopsy samples, 

which potentially offers insight into breast cancer metabolism. This approach combined 

with genetic expression profiles and known patient outcomes provides a perspective 

rich in both chemical and genetic information that can aid in understanding the link 

between chemoresistance and metabolism found in breast cancer patients. Further 

analyses of breast cancer tissues exhibiting ductal carcinoma in situ tumors observed 

significant changes in metabolites and their distribution.  

 METHODS 5.3

5.3.1 TISSUE SAMPLE PREPARATION 

 Breast biopsy specimens were obtained from patients consented according to 

institutional review board protocols. Specimens were immediately embedded in Tissue-

Tek® (Fisher Scientific) optimum cutting temperature (OCT) compound, cryopreserved 

using liquid nitrogen and stored in a -80 °C freezer. Frozen tissue blocks were sectioned 

in a cryostat-microtome held at -23°C at the Fred Hutchinson Cancer Research Center 

(FHCRC). Each of the four tissue samples was serially sectioned three times and each 

section was ~5 µm in thickness. The first and third sections were stained for optical 

imaging using hematoxylin and eosin (H&E), while the second section was analyzed by 

ToF-SIMS. The second slice of tissue was placed directly on a 2 cm2 silicon wafer that 

was previously cleaned with two successive sonications in dichloromethane, acetone, 

and methanol.  The samples were then placed in a petri dish, sealed with Parafilm® 

(VWR International), and transported to the University of Washington for immediate 

ToF-SIMS analysis. Each tissue was sectioned on a different day and the time from 

tissue cutting to analysis was less than 90 minutes for any sample. 

5.3.2 GENE EXPRESSION SUBTYPE IDENTIFICATION 

Tissue sections were macrodissected to select regions containing the highest 

proportion of invasive tumor cells to reduce contamination from non-tumor cells. RNA 

was isolated using the AllPrep DNA/RNA Mini Kit (Qiagen Inc., Valencia, CA) and 
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gene/transcript expression was assessed using the WG-DASL® (HumanHT-12 v4) 

Assay (Illumina, Inc., San Diego, CA). Data processing and analysis were done in the R 

environment (v3.0.3). The raw expression data were pre-processed and median 

normalized using the Bioconductor lumi package143, and gene expression intrinsic 

subtypes (Luminal A, Luminal B, HER2-enriched, and TN) were determined using the 

50-gene panel described by Parker et al.144  with the software Bioconductor genefu 

package145. A table of all tissues and their subtype designation is shown in Table 5.1.  

5.3.3 TOF-SIMS 

 ToF-SIMS experiments were performed using an ION-TOF TOF.SIMS 5-100 

(ION-TOF GmbH, Münster, Germany) equipped with a liquid metal ion gun (LMIG) for 

analysis and an electron flood gun for charge neutralization. The LMIG was used to 

generate a pulsed 25 keV Bi3
+ beam impacting the target at an angle of 45°. The Bi3

+ 

beam was set in spectroscopy mode for high mass resolution (HMR) to acquire spectra 

in both polarities and fast imaging mode to acquire high spatial resolution (HSR) 

negative polarity images. The Bi3
+ current was typically 0.13-0.15 pA for HMR and 0.05 

pA for HSR. Target currents were measured before each data set using a Faraday cup. 

HSR mode images with micron spatial resolution were acquired and compared to 

features found in ToF-SIMS to H&E images. Large area images of the entire tissue 

biopsy were created by manually stitching individual optical images of 800 µm × 800 µm 

from the video camera within the ToF-SIMS before analysis of each tissue. These large 

optical stitched images were then aligned to H&E images using the tissue borders to aid 

in selecting areas where analysis patches were to be acquired. For all data collection, 

HMR positive ion data was acquired followed immediately by HMR negative ion data on 

the same area. X and Y sample stage coordinates were saved in the software to ensure 

data acquired was from the same region in both polarities. HSR images were obtained 

from each sample region after all HMR spectra were completed. In HMR mode, mass 

resolution (m/Δm) for the C2H3
+ ion was greater than 4500. Positive ion spectra were 

calibrated to CH3
+, C2H3

+, and C4H5
+. Negative ion spectra were calibrated to CH-, OH-, 

and C2H
-. Spectra were acquired from 1 mm × 1mm, 1.6 mm × 0.6 mm, and 1.2 mm × 

0.8 mm “patches” comprising of 25 or 24 200 µm × 200 µm “tiles” on each tissue, an 
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example of positions is shown in Figure 5.1. Each tile contains 256 ×256 pixels, giving 

the patches a total pixel count of 1280 × 1280. Selecting to analyze three large patches 

rather than the entire tissue biopsy sample was chosen due to the time intensiveness 

required to analyze such large samples, which would lead to degradation during 

analysis or lipid migration. Thus, analyzing three patches would provide a timely 

analysis, providing the most relevant data of the tissue’s native chemical composition. 

The Bi3
+ dose was limited to ≤5.0×1011 ions/cm2 for each tile in both positive and 

negative ion modes, resulting in a total Bi3
+ dose ≤1.0× 1012 ions/cm2 per tile. 

SurfaceLab 6 software (ION-TOF GmbH, Münster, Germany) was used for all analyses. 

A table of all tissues where data has been acquired and analyzed is shown in Table 5.1. 

Reference data including H&E stained images, ToF-SIMS camera stitched images, high 

spatial resolution ToF-SIMS images, and tables containing genetic and pathological 

designation can be found in Appendix A. Supplemental Table S.5.2 provides key 

masses and their biological molecule identified within PCA. 

 

Figure 5.1. Example of ToF-SIMS data acquisition from breast tissue biopsy. (A) H&E stained image of 
breast cancer tissue biopsy. Colored boxes represent 1 mm × 1 mm patches where ToF-SIMS data was 
acquired. (B) An increased magnification optical H&E image of a selected analysis region showing the 
200 × 200 µm tile outlined in black. (C) A total counts ion image from the ToF-SIMS analysis region 
corresponding to (B) showing the 25 200 × 200 µm tiles comprising of one stitched patch. White regions 
seen in the tissue slices can indicate either tears or fatty acid droplets.  
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5.3.4 PRINCIPAL COMPONENT ANALYSIS 

 Principal component analysis (PCA) was applied to ToF-SIMS images acquired 

from the tissues using all pixels in the data set (herein referred to as image data and 

displayed as images) and to summed spectral data from individual patches (herein 

referred to as spectral data and displayed as individual data points).  

 Data used in this study were pre-processed for PCA as follows: 1) ToF-SIMS 

image data were Poisson scaled and mean centered, and 2) summed spectral data 

from individual tile images were normalized to the sum of the intensities of all of the 

peaks in the peak list, square-root transformed, and mean centered. Regions of 

exposed silicon substrate and OCT (e.g. holes or tears from cutting tissue and 

embedding medium surrounding tissue) were excluded from all analyses by applying a 

threshold to the pixels with a Si+ signal, where m/z 27.9 was used to detect silicon and 

m/z 332.2 (C14H29
+, a fragment of the benzalkonium additive in OCT)13 is used to detect 

OCT areas. All PCA was performed using the NBToolbox SpectraGUI and ImageGUI 

(Daniel Graham Ph.D., NESAC/BIO, University of Washington), that operate within 

MATLAB (MathWorks, Natick, MA). Peaks were chosen whose maximum intensity was 

twice or more than that of the average background intensity. The spectra from all 

tissues were overlaid and then peaks were manually selected and integrated to full 

width half max. All peaks below m/z 920 were selected, excluding known salt, salt 

adduct, substrate and inorganic peaks. A total peak list of 846 and 807 peaks were 

chosen from the positive and negative ion modes, respectively. All peaks in the list were 

used for image PCA analysis while spectral PCA was limited to peaks with m/z above 

200 resulting in 391 and 329 peaks for the positive and negative ions peak lists, 

respectively.  

 PCA, using the ImageGUI, is first applied to image data formatted as .bif6 files 

from SurfaceLab 6. No peaks are excluded from this data except salts, substrate (Si 

and Si containing peaks), and embedding medium (OCT). Normalization was not 

applied to imported image patches; image data were pre-processed by Poisson scaling 

and mean centering before PCA.  

The presence of large fatty acid droplets were occasionally observed in some of 

the tissue sections. It is important to note that breast tissue is a fatty tissue, therefore 
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the prevalence of fatty acid droplets within tissue sections can vary from none to many 

depending on the biopsy.  As shown in Figure 4.5 and Figure 4.6C, the strong signal 

from the fatty acid droplets dominates the PCA scores resulting in the main variability 

between the samples being the presence or absence fatty acid droplets in a particular 

tissue slice.  Following the protocol developed in Chapter 4, the fatty acid droplets were 

removed prior to PCA as so sample comparison could be focused on cellular and/or 

stromal tissue regions.   

Scores images that corresponded to cellular and stromal areas from serial H&E 

images were selected to be used as masks. Using SurfaceLab 6, scores images were 

imported and spectra reconstructed by applying a 10% minimum, 90% maximum signal 

threshold to the pixels within the selected score image. The resulting data, in .bif6 

format, were imported back into ImageGUI and the patch parsed into individual 200 µm 

× 200 µm tiles where each tile represents one data point in the spectral PCA plots. The 

parsed data was then imported in .xlsx format into SpectraGUI for spectral analysis, 

where each individual tile represents one data point in the PCA scores plots. Imported 

data were normalized to the sum of the intensities of all of the peaks in the peak list, 

square-root transformed, and mean centered prior to spectral PCA. Further spectral 

PCA was done by separating data sets by their defined cancer subtypes for 

comparison. 

5.3.5 DUCTAL CARCINOMA IN SITU PRINCIPAL COMPONENT ANALYSIS 

Four patches from three separate tissues (patient numbers: 4, 7, 8) had 

pathologist identified ductal carcinoma in situ (DCIS). PCA was applied ToF-SIMS data 

to these four specific patches using two modified peak lists in the positive polarity. The 

first containing signature amino acid fragments from Canavan et. al164 and May et. al.165 

However, the peak at m/z 86.1 was excluded as this peak could not be differentiated 

from the choline head group from the phosphotidylcholine lipid due to the mass 

resolution of the instrument and saturation of the detector by phosphotidylcholine 

fragment. This peak list contained a total of 45 peaks. The second list combined both 

nucleobases and the previous 45 peaks from the amino acid peak list for a total of 68 
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peaks. All other parameters discussed previously using the positive polarity and peak 

selection was applied in the same manner to generate the image PCA data.  

5.3.6 SECOND HARMONIC GENERATION (SHG) 

The multiphoton excitation fluorescence (MPEF) and SHG images were acquired 

with a scanning confocal multiphoton microscope (Olympus, FV1000 MPE BX61) with a 

20x objective. The light source was a tunable laser (Spectra-Physics Mai Tai) with 

λexc at 910 nm and with bandpass filters at 495-540 nm for the MPEF channel and 420-

460 nm for the SHG channel. The detectors were photon multipliers, located so that the 

SHG was captures in back-scattering mode and the MPEF in epifluorescence mode. All 

SHG experiments were performed on H&E stained slides obtained from the Fred 

Hutchinson Cancer Research Center.  
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Table 5.1. List of patient breast cancer biopsies analyzed in this study, their receptor status (estrogen 
(ER), progesterone (PR), human epidermal growth factor receptor 2 (HER2)), cytokeratin 5/6 status, 
epidermal growth factor receptor (EGFR) status, tumor grade, pathological response (pCR), and 
immunohistochemistry (IHC) (triple negative, TN and HER2 enriched, HER2) and gene expression 
subtype. All breast cancer biopsies were analyzed before any treatment was administered with the 
exception of Patient 23.  

 

 RESULTS AND DISCUSSION 5.4

 To simplify the complexity and aid in the interpretation of such a large ToF-SIMS 

data set, principal components analysis (PCA) was applied to both ToF-SIMS image 

and spectral data to reduce the dimensionality of the data. Using the method developed 

in Chapter 3, PCA was applied to a total of 75 patches from 22 pre-treated breast 

cancer biopsies and one post-treated biopsy that contained normal stromal structures 

only. Briefly summarizing the method presented in Chapter 3, regions of interest (ROIs), 

specifically cellular and stromal regions were generated from the use of PCA of ToF-

SIMS image data for all tissue samples. The scores images that were representative of 

cellular and stromal areas were then used to reconstruct and extract the mass spectral 

information from the ToF-SIMS images. The reconstructed spectral information specific 
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to cellular or stromal regions was subjected to PCA to compare across all patients 

respectively (e.g. cellular vs. cellular and stromal vs. stromal).  Using this method 

identifies the largest amount of variance between highly specific areas within patients 

providing a way to determine chemical differences between patient response that may 

be linked to lipid metabolism. 

5.4.1 PCA APPLICATION TO TOF-SIMS SPECTRA OF CELLULAR REGIONS 

Figure 5.2 shows the results from spectral PCA of the isolated cellular regions in 

the negative polarity with an m/z ≥ 200 using all 22 samples and 72 analysis patches. 

PC2 scores, with an overall variance of 9%, exhibited the most separation between 

samples. The loadings plot presented in Figure 5.2C shows chemical species that 

correlate to Figure 5.2A and Figure 5.2B. PC2 positive loadings (Figure 5.2C, y > 0) 

show fatty acids C14:0, C16:1, C16:0, C18:0, C20:4, and C20:3 (C14H27O2
-, C16H30O2

-
, 

C16H31O2
-
, C18H35O2

-
, C20H31O2

-
, C20H33O2

-
, m/z 227.20, 253.22, 255.24, 283.26, 303.24, 

305.25, respectively), phosphoinsitol (PI) fragments (C6H10PO8
-, m/z 241.01 and 

C9H16PO9
-, m/z 299.05), cholesterol sulfate (C27H45O4S

-, m/z 465.30), and two 

sphingomyelin (SM) (34:1) fragments (C36H69NO6P
-, C38H76N2O6P

-, m/z 642.51, 687.56) 

having high positive loadings. C18:2, C18:1(C18H31O2
-, C18H33O2

-, m/z 279.23, 281.25 

respectively), a fragment of C18:2 or C20:1 at m/z 261.24 (C18H31O2
- or C19H33

-), C20:1 

(C20H37O2
-, m/z 309.28), cholesterol (C27H45O

-, m/z 385.35), and vitamin E (C29H49O2
-, 

m/z 429.37) dominate the negative loadings (Figure 5.2C, y < 0). While PC2 did show 

some separation between samples, the data set did not result in a discernable trend 

when related to either pathological response (pCR) or by breast cancer subtype shown 

in Figure 5.2A and Figure 5.2B, respectively. 

It is worth mentioning that PC1 (not shown), encompassed more of the chemical 

variance at 53%, but showed a large standard deviation for many of the samples 

resulting in little to no separation in the PCA scores plot for PC1. This could be due to 

the variable presence of fatty acids and cholesterol across a single tissue, showing 

higher intensity in some tiles of the analysis patch compared to others within the same 

analysis patch and tissue section. The loadings for PC1 consisted specifically of fatty 

acids and cholesterol. 
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Figure 5.2. (A) PC2 scores generated from using cellular ROIs using the negative ions m/z >200. PC2 
shows an overall variance of 9%. The lines above and below the individual sample data points 
demonstrate the 95% confidence interval. Patient data is presented as pathologically responding (red) 
and non-responding (blue). (B) PC2 scores colored to show breast cancer subtypes, triple negative (teal), 
luminal A (blue), luminal B (gray), and HER2 enriched (orange). (C) Loadings plot displaying the chemical 
species that correspond to the cellular regions. 
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5.4.2 PCA APPLICATION TO TOF-SIMS SPECTRA OF STROMAL REGIONS 

The same method using PCA on isolated ToF-SIMS spectral regions described 

above was also applied to all 22 samples and 72 analysis patches of the reconstructed 

stromal regions. Figure 5.3A and Figure 5.3B show the results from spectral PCA of the 

isolated stromal regions in the negative polarity with an m/z ≥ 200. As with the cellular 

spectral analysis using PCA, there was no distinct separation trend by pCR (Figure 

5.3A) or by breast cancer subtype exhibited by any PCs. Similarly to the PC1 scores of 

the cellular region data, the PC1 scores (57% of the variance) of the stromal regions 

(not shown) also showed large confidence intervals and overlap of score. PC2 scores of 

the stromal data (Figure 5.3A and Figure 5.3B) captured an overall variance of 9% and 

as with the cellular data PC2 showed less variability within each tissue sample. 

However, there was no apparent overall trend related to pCR or tumor subtype. PC2 

scores from the stromal regions (Figure 5.3A and Figure 5.3B), show more variability or 

spread within each tissue sample when compared to the PC2 scores of the cellular data 

(Figure 5.2). This may be due to the fact that the stromal tissue is more heterogeneous 

than that of the cellular regions, as the cells associated with the stroma can remodel the 

extracellular matrix and are known to readily mutate in the tumor microenvironment.166 

Some of the tiles within these stromal regions may be closer to the cellular/tumor 

regions and are different than that of the other stromal tiles further away from the 

cellular/tumor regions exhibiting more variability. Examining the loadings in Figure 5.3C 

of the stromal regions also shows similar chemicals species to what was observed in 

cellular regions, with the exception of a high loading of vitamin E in the positive 

loadings.   
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Figure 5.3. (A) PC2 scores generated from using stromal ROIs using the negative ions m/z >200. PC2 
shows an overall variance of 9%. The lines above and below the individual sample data points 
demonstrate the 95% confidence interval. Patient data is presented as pathologically responding (red) 
and non-responding (blue). (B) PC2 scores colored to show breast cancer subtypes, triple negative (teal), 
luminal A (blue), luminal B (gray), and HER2 enriched (orange). (C) Loadings plot displaying the chemical 
species that correspond to the stromal regions.  
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The biopsy obtained from Patient 23 showed completely normal breast tissue. 

The biopsy was taken after Patient 23 had been treated with chemotherapeutics but it is 

possible that the biopsy missed the cancerous region, as only normal stromal structures 

were visible. This sample provided a “healthy” or normal stromal sample to compare 

with the other stromal samples. When this sample was added to the other stromal 

samples, there was not a significant shift in the scores of any PC of any samples and 

little change in the loadings plot. Thus, the addition of the normal stromal tissue did not 

provide any further separation aiding in the identification of chemical differences 

between pCR and non-pCR tissues. As observed in the previous two previous spectral 

PCA analyses of cellular and stromal regions, PC2 scores (Figure 5.4A) showed the 

best separation of the samples. The overall variance of 9% captured by PC2 with the 

addition of the normal stromal tissue data is equal to the amount of variance captured 

by PC2 without the addition of the normal stromal tissue as shown in Figure 5.3.  The 

loadings plot including the normal stromal tissue shown in Figure 5.4B, also did not 

show any significant differences when compared to the loadings plot in Figure 5.3C. 

The normal stromal tissue did exhibit a general trend of positive scores which correlated 

to fatty acids C14:0, C16:0, C18:1, C18:0, vitamin E, cholesterol sulfate, and SM (34:1) 

and PI fragments.  
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Figure 5.4. (A) PC2 scores generated from using stromal ROIs using the negative ions m/z >200. PC2 
shows an overall variance of 9%. The lines above and below the individual sample data points 
demonstrate the 95% confidence interval. Patient data is presented as pathologically responding (red), 
non-responding (blue), and normal stromal tissue (purple). (B) Loadings plot displaying the chemical 
species that correspond to the stromal regions. 

5.4.3 APPLICATION OF PCA TO SPECIFIC BREAST CANCER SUBTYPES  

To test if specific cancer tissue subtypes exhibited distinct chemical information 

pertaining to pathological response (pCR), the samples from subtypes TN (triple 

negative) and Luminal B types were individually compared using spectral PCA 

according to the immunohistochemistry designation. The aim was to utilize specific 

regions (e.g. cellular and stromal) within subtypes to identify potential molecular species 

involved with chemoresistance. The TN subtype showed separation of pCR and non-

pCR patient tissue samples, demonstrating that lipid metabolism variability has the 
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potential to distinguish treatment/patient outcome for TN type tumors. Luminal B 

showed significantly more variability than the TN samples without an apparent 

separation between pCR and non-pCR tissues.  

5.4.3.1 TRIPLE NEGATIVE TISSUES 

The results from PC2 of the cellular regions of the TN subtype are shown in 

Figure 5.5A. PC2 (12% variance) exhibited the best sample separation between patient 

tissue samples and shows a clear pattern of separation between complete pCR (Figure 

5.5A, red) and non-pCR (Figure 5.5A, blue). The tissues with positive scores, patient 

numbers 3, 16, 19, 20, and 22 are classified as pCR patients and separated across 

PC2, where fatty acids C14:0, C16:0, C18:0, C20:4, C20:3, and SM fragments are 

observed in the positive loadings (Figure 5.5B, y > 0). C18:2, C18:1, and cholesterol all 

have negative loadings and correlate with the non-pCR patient tissues 1, 5, 13, and 18. 

Patient number 21, a non-pCR case, exhibited positive scores which align with pCR 

patient tissues. A potential explanation for the tissue biopsy from patient 21 to follow the 

pCR tissue trend is that while not readily apparent in the serial H&E sections, the biopsy 

may contain cellular areas undergoing necrosis. Tumor tissues showing necrotic cellular 

areas have shown to be rich with SM and are associated with a higher mortality rate 

and are more aggressive.27, 167 It is also known that SM is a precursor to signal for cell 

apoptosis168, where during apoptosis SM goes from the outer leaflet of the cell 

membrane into the cytosol where it begins the cell death signaling pathway. However, 

SM is also a precursor for a sphingosine-1-phospahte (S1P) which is an inducer for cell 

growth.169 Since SM is a precursor for both cell death and proliferation this makes 

interpretation of the data more difficult. One potential explanation for TN pCR patients 

exhibiting a higher presence SM in their cellular regions is that the SM has not been 

internalized for either proliferation or apoptotic signaling and that their membrane and 

SM metabolism has not been significantly altered. For future studies, the examination of 

biopsies for necrosis may aid in understanding the presence of SM. 

Also of note, are PI fragments (C6H10PO8
-, m/z 241.01 and C9H16PO9

-, m/z 

299.05) and fatty acids C16:0, C18:0, and C20:4 in the positive loadings. It has been 

discussed that PI (38:4) which consists of two fatty acid chains, C18:0 and C20:4, is 
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significantly increased in non-malignant breast cancer cells.170 While the entire mass of 

PI(38:4) cannot be observed at a high intensity at m/z 885.55, its fragmentation pattern 

is quite apparent within the loadings plot with C20:4 and C18:0. It is also possible that 

C16:0 is a fragment from SM(34:1) or  multiple higher mass lipids and is therefore more 

difficult to assign a proper biological function to its presence.  

 Non-pCR patients correlated with fatty acids C18:2, C18:1, and C20:1. It has 

been suggested that when oxygen is restricted to cells that fatty acid desaturases 

(FADS), commonly used for both fatty acid synthesis and pro-inflammatory conditions, 

are not functional.114 For example, an inactive FADS2 in non-pCR patients would result 

in an accumulation of C20:1 and C18:1. Furthermore, an inactive FADS2 would also 

explain the presence of C18:2, as this the substrate used by FADS2 in the fatty acid 

synthesis pathway using essential fatty acids to generate long chain polyunsaturated 

fatty acids. 

 

Figure 5.5. (A) PC2 scores generated by using cellular ROIs of TN patients using negative ions m/z > 
200. The lines above and below the individual sample data points demonstrate the 95% confidence 
interval. Patient data is presented as pathologically responding (red) and non-responding (blue). (B) PC2 
loadings plot displaying the chemical species that correspond to the TN cellular regions scores. PC2 
captures a total of 12% of the total variance.   

Further examination of the TN samples demonstrated that the stromal regions of 

the TN tissues also exhibit a similar trend as the cellular regions. These results are 

shown in Figure 5.6. The PC2 scores of the isolated stromal regions from the TN group 

(Figure 5.6A) were similar to that of the TN cellular group (Figure 5.5A), where the pCR 

patients separated from the non-pCR patients with the exception of Patient 21. The 

scores of the stromal components exhibit slightly more variation within samples, which 
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can be seen by the increased spread of data points between the 95% confidence 

intervals.  

Comparing the scores and loadings of the stromal to cellular regions shows one 

key difference. The negative loadings (Figure 5.6B) of the stromal regions (associated 

with non-pCR tissues) does not show the fatty acid C18:2. This may indicate that the 

cellular or tumor regions are actively transporting C18:2 for fatty acid synthesis resulting 

in less, or depleted, C18:2 in the surrounding environment. Other fatty acids such as 

C20:1 and C18:1 and its [M-H2O]- (C18H32O
-) fragment at m/z 263.24, and cholesterol 

are consistent with the cellular plot. 

 
Figure 5.6. (A) PC2 scores generated by using stromal ROIs of TN patients using negative ions m/z > 
200. The lines above and below the individual sample data points demonstrate the 95% confidence 
interval. Patient data is presented as pathologically responding (red) and non-responding (blue). (B) PC2 
loadings plot displaying the chemical species that correspond to the TN stromal regions scores. PC2 
captures a total of 10% of the total variance.   

Using the normal stromal tissue biopsy acquired from Patient 23, the TN stromal 

tissues could be “challenged” to test the robustness of the separation of pCR and non-

pCR observed by PCA. The resulting scores from PC2 are shown in Figure 5.7A. There 

was nearly no change observed in scores after the addition of the normal stromal tissue 

data. The overall variance captured remained equal to 10% and the loadings plot 

(Supplemental Figure S.5.1) did not show any significant changes. The normal stromal 

tissue data exhibited positive scores along with all pCR tissues and the one non-pCR 

tissue, Patient 21. This could be interpreted that the pCR stromal tissues are also more 

similar to that of the normal stromal tissue than that of the non-pCR tissue.  
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Figure 5.7. PC2 scores generated using stromal ROIs of TN patients using negative ions m/z > 200. 
Patient data is presented as pathologically responding (red), non-responding (blue), and normal stromal 
tissue (purple). The lines above and below the individual sample data points demonstrate the 95% 
confidence interval. PC2 captures a total of 10% of the variance between all samples.  

5.4.3.2 LUMINAL B TISSUES 

PCA was used to explore the chemical variance between 10 patients with the 

Luminal B subtype and identify potential molecular species involved with 

chemoresistance. PC2 offered the best separation between patient tissues, however 

unlike the TN dataset, no PCs for the Luminal B set showed a clear separation between 

pCR and non-pCR tissues. PC2 of the cellular regions is shown in Figure 5.8A with pCR 

samples in red and non-pCR samples in blue. The lack of trend between pCR and non-

pCR tissues could be due to the variability of receptor types on the Luminal B tissues or 

potentially even the subtype itself (showing different types for IHC and gene 

expression). For example, all of the TN tissues were negative for all receptors, meaning 

that there was no overexpression of estrogen (ER), progesterone (PR), and human 

epidermal growth factor 2 (HER2). The Luminal B subtype data compared here has 

variable overexpression of both PR and HER2, which could influence the spread of the 

data in samples. This is reflected in Table 5.1 showing the receptor status of all the 

tissues studied.  

The cellular loadings plots of the Luminal B tissues (Figure 5.8B) shows other 

fatty acid species not observed in the TN loadings (Figure 5.5B). In the positive loadings 

longer chain fatty acids C24:1 (C24H45O2
-, m/z 365.34) and C24:0 (C24H47O2

-, m/z 

367.36) are observed. These fatty acids have been documented to be located in 



www.manaraa.com

79 

 

necrotic areas.114 It has been shown that in mammalian tissues C24:0 and C24:1 are 

the most common very long chain fatty acids (VLCFAs) and that sphingolipids are 

common carriers of the C24 chain.171 It has also been shown that elongating enzymes, 

specifically ELOVL1, produces a C24 with acetyl coenzyme A (CoA) which is a 

substrate for sphingolipid and ceramide synthesis.171, 172 Ceramides are the lipids 

known to be produced by the hydrolysis of sphingolipids (e.g. sphingomyelin) that are 

intracellular signals for cell apoptosis.173 While it is unknown if the C24 fatty acids 

observed here are related to ceramide or sphingolipid synthesis it can be said that the 

fatty acid profile when using PCA to compare Luminal B cellular regions is much 

different than that of the TN tissues. It is also possible that PC2 is separating the tissues 

by their fatty acid enzymatic processes. Following this assumption it would explain the 

accumulation of fatty acids C18:0 and its fragment C18H33O
- at m/z 265.25, C20:3, and 

C20:2 as these are all products of mammalian fatty acid synthesis. The presence of 

C20:4 is contradictory, as it is an essential fatty acid unable to be synthesized and can 

be associated with inflammation, apoptosis, and tumor promotion.174 Also, the fragment 

at m/z 269.25, possibly C17H33O
- , has no literature significance and is li a fragment from 

a higher mass lipid.  

The negative loadings that correlate show far fewer metabolites that correlate to 

Patient tissues 4, 8, 11, 15, and 17. The negative loadings are dominated by C18:1 and 

vitamin E. While it has been shown that vitamin E analogs can trigger apoptosis in some 

breast cancer cells types,175, 176 which may explain why pCR Patients 15 and 17 exhibit 

negative scores, however, this does not provide an explanation for the other 3 non-pCR 

patients.   
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Figure 5.8. (A) PC2 scores generated by using cellular ROIs of Luminal B patients using negative ions 
m/z > 200. The lines above and below the individual sample data points demonstrate the 95% confidence 
interval. Patient data is presented as pathologically responding (red) and non-responding (blue). (B) PC2 
loadings plot displaying the chemical species that correspond to the of Luminal B cellular scores. PC2 
captures a total of 14% of the total variance.   

Examining the stromal components of the Luminal B subtype, also did not result 

in any discernable trend between pCR and non-pCR patients.  Again PC2 (14% of total 

variance) demonstrated the best separation between samples Figure 5.9A. The 

loadings (Figure 5.9B) that corresponded to these scores show C16:0, C18:2, C18:1, PI 

fragments (m/z 241.04 and 299.07) vitamin E, and SM fragments (m/z 642.51and 

687.56) for positive loadings while the negative loadings corresponded to C18:0, C20:4, 

C20:3, C24:1, and cholesterol. Patient tissue 4 appears to have scores that are more 

neutral as data is spread between positive and negative scores across the y=0 axis. 

This is different than what was observed in the Luminal B cellular scores, as only 

Patient tissue 12 exhibited neutral scores. 
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Figure 5.9. (A) PC2 scores generated by using stromal ROIs of Luminal B patients using negative ions 
m/z > 200. The lines above and below the individual sample data points demonstrate the 95% confidence 
interval. Patient data is presented as pathologically responding (red) and non-responding (blue). (B) PC2 
loadings plot displaying the chemical species that correspond to the of Luminal B stromal scores. PC2 
captures a total of 14% of the total variance.   

The normal stromal tissue data set from Patient 23 was also included in the 

Luminal B stromal regions as a separate analysis. The scores resulting from this 

analysis can be seen in Figure 5.10 and the loadings in Supplemental Figure S.5.2. The 

scores and loadings of the Luminal B stromal data set were not significantly changed 

with the addition of the normal tissue. The normal stromal tissue resulted with a majority 

of positive scores. This is of note, as this relates to less pCR tissues, Patients 6, 7 and 

14 exhibited negative scores, and more to non-pCR tissues like Patients 8, 11, and 12.  

 

Figure 5.10. PC2 scores generated using stromal ROIs of Luminal B patients using negative ions m/z > 
200. Patient data is presented as pathologically responding (red), non-responding (blue), and normal 
stromal tissue (purple). The lines above and below the individual sample data points demonstrate the 
95% confidence interval. PC2 captures a total of 14% of the variance between all samples. 
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Comparing the stromal and cellular components of the Luminal B subtype it is 

noticeable that SM fragments are observed to have more variance within the stromal 

regions than the cellular. Comparing the TN and Luminal B subtypes, it can be seen 

that the TN subtype does not demonstrate variability of vitamin E. Vitamin E variability is 

only observed in both cellular and stromal regions loadings of the Luminal B subtype. 

5.4.4 CHARACTERIZATION OF AMINO ACIDS AND NUCELOBASES WITHIN IN SITU TUMORS 

Along with various subtypes and different receptor status, the different biopsy 

samples had different tumor designations (e.g. infiltrating and in situ). In particular, 

malignant cells contained within the ductal basement membrane of the breast can be 

diagnosed as ductal carcinoma in situ (DCIS). These ducts and the lobules may be filled 

by malignant cells, which may also undergo central necrosis.177 The College of 

American Pathologists released that DCIS is “the earliest possible and most treatable 

diagnosis of breast cancer” as it is the most common form of non-invasive breast 

cancer.178 However, if DCIS goes untreated, it can develop into invasive breast cancer.  

Therefore, acquiring as much information as possible about DCIS tumors could aid in 

further understanding invasive breast cancer mechanisms. 

 Amino acid generation, degradation, and recycling are constantly occurring within 

the body. These molecules can then be converted into metabolic intermediates that can 

be used as fuel for tumors and also used in proteins required for cell proliferation.179, 180 

Considering that DCIS tumors have not become invasive, ToF-SIMS provides a unique 

way in observing the spatial location of amino acids and other nucleobases within or at 

the boundary of the DCIS tumor. Furthermore, ToF-SIMS is especially suited for lower 

molecular weight species in the positive polarity which are not constantly discussed 

within the SIMS community.   

 Four patches from three separate tissues 4, 7, 8 analyzed by ToF-SIMS had 

pathologist identified DCIS tumors. These patches were then analyzed using a modified 

amino acid peak list from Canavan et al.164 DCIS tumors varied in number and size 

within each analysis patch. Patient 4 showed the largest DCIS tumor (approximately 0.5 

mm  0.68 mm), which contained a necrotic core at the center of the tumor. This 

analysis area will be used as an example as the tumor and surrounding tissue is easily 
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observed. Patient 7 contained two analysis areas with DCIS tumors. One area 

contained only one DCIS tumor with a necrotic core, but was much smaller 

(approximately 0.27 mm 0.25 mm) when compared to DCIS tumor from Patient 4. The 

second DCIS analysis area from Patient 7 had multiple DCIS tumors, ranging in size 

from 0.18 mm  0.08 mm to 0.58 mm  0.28 mm, without any necrotic areas and is 

shown in both Figure 5.13E-H and Supplemental Figure S.5.3. Patient 8 had one 

analysis patch containing one DCIS tumor (approximately 0.3 mm  0.28 mm). This 

tumor did not contain a necrotic core. PCA of the DCIS patches showed similar 

separation of the DCIS/cellularized areas and stromal regions in both the scores and 

loadings. 

  

Figure 5.11. PCA of ToF-SIMS amino acid image data of a tissue biopsy containing DCIS tumors. (A) 
PC1 positive scores displaying the DCIS tumors and cellular areas. (B) PC1 negative scores displaying 
the connective tissue around and at the interface of the DCIS tumors and cellular areas. (C) Loadings plot 
displaying the amino acids that correspond to the scores images shown in (A and B). All scale bars 
represent 200 µm.   

Using the amino acid peak list, PCA was applied to the DCIS tumor image 

acquired from Patient 4. The results are shown in Figure 5.11.  PC1 scores images 

show a distinct separation of the tumor and cellular dense areas (Figure 5.11A) and the 

stromal or connective tissue regions (Figure 5.11B). These images can be correlated 

with Figure 5.1B and Figure 5.13A, which displays the H&E stained optical image of this 

region. It can be seen in positive values on the loadings plot (Figure 5.11C) that the 
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cellular dense areas and the majority of the tumor correlate to alanine (Ala), tyrosine 

(Tyr), lysine (Lys), valine (Val), glycine (Gly), methionine (Met), and tryptophan (Trp).  

The negative scores display the stromal or connective tissue regions (Figure 

5.11B) also show the necrotic region located at the center of the tumor. These regions 

correlate with the negative loadings (Figure 5.11C) showing a range of amino acids.  

 

Figure 5.12. ToF-SIMS ion images of amino acids and nucleotides from a tissue section containing a 
DCIS tumor. All scale bars represent 200 µm.   

Examining ion images of some of the highest loading peaks is shown in Figure 

5.12. It can be seen that key glycine (CH4N
+, m/z 30.03) and proline (C4H6N

+, m/z 

68.05) fragments are located primarily outside of the tumor, pertaining to the collagen 

containing stromal tissue. Both arginine (C2H7N3
+, m/z 73.06) and histidine fragments 

(C5H8N3
+, m/z 110.07) are observed to be localized in the same areas as glycine and 

proline and are also exhibit signal with the necrotic tumor core. It can be observed in the 

ion image of the methionine fragment (C5H9OS+, m/z 117.04) that there is an increased 

signal within the tumor and cellularized areas compared to the stromal region. The 

spatial distribution of guanine (C5H3N4O
+, m/z 135.03) exhibits a higher signal in the 

infiltrating cellular areas outside of the DCIS tumor. It can also be observed in the ion 
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image of guanine, that there is signal present at the edge of the DCIS tumor indicated 

by the boxed area. The tyrosine fragment ion (C10H10NO+, m/z 136.08) image shows a 

similar distribution to guanine but with an increased intensity in the cellularized regions 

outside of the DCIS tumor. Signal can also be seen in the tyrosine ion image along the 

same edge of the DCIS tumor where guanine was present but extends further than 

guanine as indicated by the boxed region. An identifying fragment of tryptophan 

(C10H11N2
+, m/z 159.09) also has a similar distribution to that of guanine and tyrosine 

within the tumor and the cellular regions outside of the tumor, but with a higher intensity. 

It can also be observed in the tryptophan image that there is intensity within the necrotic 

tumor core. Interestingly, the ion fragments from guanine, tyrosine, and tryptophan do 

not appear have a similar intensity within the other DCIS tumor, which is located in the 

lower left hand corner of all ion images.  

The correlation of tryptophan with the cellular areas could be related to an altered 

metabolism of tryptophan. It has been shown that high-grade breast cancer tumors at 

an advanced stage overexpress enzymes whose key substrate is tryptophan and could 

explain the increase of tryptophan in the tumor/cellular areas.181 The higher signal 

intensity of methionine within the tumor and cellularized areas is consistent with an 

altered metabolism and is associated with rapid growth in liver cells.182, 183 The 

presence of tyrosine in the cellular regions potentially corresponds to an overexpression 

of tyrosine kinases at the cell membrane, as they are commonly overexpressed in many 

human cancers.184 Signals generated with the phosphorylation of tyrosine by these 

kinases have been shown to be increased, contributing to tumorigenesis and promoting 

the Warburg effect.185 It is expected that the highest loadings associated with the 

stromal or connective tissue would be glycine and proline, as collagen is a major 

component of connective tissue and is comprised of proline and glycine. However, the 

glycine fragment (C4H7N2O2
+, m/z 115.05) is contradictory to what is expected as it 

exhibits a high positive loadings value. It is possible that this mass contains fragments 

from other molecules, particularly phosphatidylcholine, the most common cellular 

membrane component. This is most likely the case as all other glycine fragments have 

negative loadings and are associated with the collagenous regions. 
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The highest negative loadings show glycine, proline (Pro), arginine (Arg), and 

arginine/histidine (Arg/His). The high negative loadings for glycine and proline is due to 

their prevalence in collagen fibers. Collagen is the main structural protein in mammalian 

connective tissues.186 The presence of arginine could be linked to multiple sources, 

such as collagen but is also the precursor for nitric oxide (NO). NO is suggested to be 

responsible for tumor-induced immunosuppression.54 The remaining amino acids are 

likely due to the breakdown and release of intracellular components associated with the 

necrotic core of the tumor.  

 

Figure 5.13. Images of collagenous regions from tissues containing DCIS tumors using H&E, ToF-SIMS, 
and SHG. (A & E) Shows the adjacent H&E stained region analyzed by ToF-SIMS. DCIS tumors shown 
are from Patient 4 (A) and Patient 7 (E). Labeled boxes correspond to SHG imaged areas. (B & F) 
Adjacent DCIS containing tissue section analyzed by ToF-SIMS and summed glycine (CH4N

+
, m/z 30.03) 

and proline (C4H6N
+
, m/z 68.04) fragments corresponding to collagen. (C,D,G, & H) show green colored 

fluorescence images of fibrillary collagen acquired from SHG. All scale bars represent 100 µm.   

Further investigation using second harmonic generation (SHG) on adjacent H&E 

stained tissue sections was used to corroborate that the negative scores and loadings 

pertained to collagen. These results are shown in Figure 5.13.  Briefly, SHG is a 

powerful non-linear microscopy technique that can image cellular autofluorescence and 

extracellular matrix structures in intact tissues. SHG has been used a powerful modality 

for imaging fibrillar collagen in a large range of tissues.187, 188 SHG images (Figure 

5.13C, Figure 5.13D, Figure 5.13G, and Figure 5.13H) can be directly correlated to the 

collagenous connective tissue structures shown in the H&E stained optical image 
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(Figure 5.13A and Figure 5.13E, pink regions), and the summed ion images of glycine 

and proline (Figure 5.13B and Figure 5.13F). This indicates that the ToF-SIMS can be 

used to interpret the chemical structures that surround tumors and possibly that it can 

provide similar predictive capability as SHG using key fragments from collagen.  

To test whether it was possible to extract spatial locations of nucleobases from 

DCIS tumors, 23 distinct nucleobases peaks previously identified165 were added to the 

amino acid peak list, followed by the application of PCA to ToF-SIMS image data. The 

results are shown in Figure 5.14. PC1 successfully separated the tumor (Figure 5.14A) 

from the connective tissue (Figure 5.14B). The scores in Figure 5.14 are similar to the 

scores images presented in Figure 5.11. This is not surprising as the majority of the 

same peaks have been used. Examining the loadings plot (Figure 5.14C) shows that 

almost all nucleobases have positive loadings, which can be correlated to the DCIS 

tumor and cellularized regions observed by positive scores (Figure 5.14C). This is 

expected as these are the densest cell areas within the tissue sample. The negative 

scores shown in Figure 5.14B and negative loadings show the same trend as observed 

with the amino acid peak list in Figure 5.11. The consistent high negative loadings of 

glycine and proline are indicative of the collagenous regions outside of the tumor. These 

results were consistent using the amino acid and nucleotide peak list on the DCIS tumor 

shown in Figure 5.13E-H and can be found in Supplemental Figure S.5.3. 
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Figure 5.14. PCA of ToF-SIMS amino acid and nucleotide image data of a tissue biopsy containing DCIS 
tumors. (A) PC1 positive scores displaying the DCIS tumors and cellular areas. (B) PC1 negative scores 
displaying the connective tissue around and at the interface of the DCIS tumors and cellular areas. (C) 
Loadings plot displaying the amino acids and nucleotides that correspond to the scores images shown in 
(A and B). All scale bars represent 200 µm.   

 CONCLUSIONS 5.5

Isolated cellular and stromal regions of breast cancer biopsies (before treatment) 

were analyzed using imaging ToF-SIMS and PCA. Using the entirety of the sample pool 

in spectral PCA did not show any discernable trend between samples when related to 

tumor subtype or patient pCR. By separating the samples into their specific subtype 

(e.g. TN and Luminal B), spectral PCA demonstrated a trend separating TN pCR and 

non-pCR patients based on the fatty acids present in specific regions. However, there 

was more variability in the Luminal B subtype and this subtype did not appear to follow 

the same trend. This could be due to the variability of the Luminal B subtype and using 

a more specific peak list may make provide clearer separation between pCR and non-

pCR.   

PCA of ToF-SIMS image data revealed the separation of DCIS tumors and the 

stromal tissue surrounding it using only amino acids and nucleobases. SHG 

investigations agree that ToF-SIMS and imaging PCA can distinctly identify the 

structure of the stromal tissue based on its chemical information. This shows that there 

is an opportunity supplement the isolated cellular and stromal regions chemical data 
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with ToF-SIMS ability to recognize specific structures, such as collagen, which has been 

previously used to predict breast cancer patient data.186   
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Supplemental Figure S.5.1. PC2 loadings plot displaying the chemical species that correspond to the of 
TN stromal scores in Figure 5.7 including the normal stromal tissue biopsy (Patient 23). 

 

 

 

Supplemental Figure S.5.2. PC2 loadings plot displaying the chemical species that correspond to the of 
Luminal B stromal scores in Figure 5.10 including the normal stromal tissue biopsy (Patient 23). 
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Supplemental Figure S.5.3. (A) PC1 positive scores displaying the DCIS tumors and cellular areas from 
Patient 7. (B) PC1 negative scores displaying the connective tissue around and at the interface of the 
DCIS tumors and cellular areas. (C) Loadings plot displaying the amino acids that correspond to the 
scores images shown in (A & B). All scale bars represent 200 µm. 
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Supplemental Table S.5.2. Key ions and fragment identification for peaks observed in PCA loadings 

plots. 
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 ABSTRACT 6.1

Solid tumors are a structurally complex system, composed of many different cell 

types. The tumor microenvironment includes non-malignant cell types that participate in 

complex interactions with tumor cells. The cross-talk between tumor and normal cells is 

implicated in regulating cell growth, metastatic potential, and chemotherapeutic drug 

resistance. A new approach is required to interrogate and quantitatively characterize 

cell to cell interactions in this complex environment. 

Here, we have applied time-of-flight secondary ion mass spectrometry (ToF-

SIMS) to generate a high resolution in situ molecular analysis of Myc-induced 

pancreatic β cell islet tumors. The high mass resolution and micron spatial resolution of 

ToF-SIMS allows detection of metabolic intermediates such as lipids and amino acids. 

Employing multivariate analysis, specifically principal components analysis (PCA), we 

show that it is possible to chemically distinguish cancerous islets from normal tissue, in 

addition to intratumor heterogeneity. These heterogeneities can then be imaged and 

investigated using another modality such as second harmonic generation (SHG) 

microscopy.  

Using these techniques with a specialized mouse model, we found significant 

metabolic changes occurring within β cell tumors and the surrounding tissues. Specific 

alterations within the lipid, amino acid, and nucleotide metabolism were observed, 

demonstrating that ToF-SIMS can be utilized to identify large-scale changes that occur 

in generated in the tumor microenvironment and could thereby increase our 

understanding of tumor progression and the tumor microenvironment. 
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 INTRODUCTION 6.2

Solid tumors are a structurally complex system consisting of tumor cells, infiltrating 

immune cells and non-malignant stromal cells. The physical and chemical interactions 

between malignant cells and non-transformed cells create the tumor microenvironment. 

This environment has been implicated in the regulation of cell growth, determining 

metastatic potential, and impacting the outcome of chemotherapy.189, 190 Tumor growth 

depends on the conversion of nutrients into biochemical and biosynthetic precursors 

especially within lipid pathways, as lipids are used for cell membrane formation, 

signaling, and energy. However, these metabolic requirements are impacted by the 

tumor microenvironment, which determines the availability of nutrients such as glucose 

and glutamine, and oxygen supplied to the tumor.191 

The use of an inducible c-Myc oncogene in a well-established model of pancreatic β 

cell tumorogenesis provides a controlled system in which to observe β cell 

tumorigenesis and investigate the role of the tumor microenvironment in tumor 

growth192. Myc, a transcription factor, is one of the most frequently deregulated 

oncogenes in human cancers.193 Deregulation of Myc is responsible for many of the 

metabolic changes that induce malignancy. Myc deregulation alters glucose, glutamine, 

and lipid metabolism and significantly modifies mitochondrial function.194-199 While it is 

known that Myc is frequently deregulated in many cancers, it is unknown how Myc-

activated tumor metabolism is impacted by an adjacent cellular environment that has 

the potential to either assist or restrict the tumor growth. Many biochemical processes 

that contribute to tumor initiation and growth could be affected by the synthesis or 

degradation of specific metabolites ranging from nucleotides, lipids, to amino acids 

within the tumor microenvironment. Chemical imaging of Myc pancreatic tissues with 

micron resolution would permit the assessment of endogenous cellular metabolic 

products within specific β cell tumor regions and surrounding tissue (made up of acinar 

cells). Harnessing the capabilities of high resolution chemical imaging allows for the 

development of methods to evaluate how these distinct tissue regions affect each 

other’s metabolism, further aiding our understanding the tumor microenvironment.  
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Metabolic analyses require sensitivity, specificity, selectively and speed, which are 

strengths of utilizing mass spectrometry imaging (MSI) as an optimal technique to 

detect and identify biologically relevant metabolites.17, 27, 30, 49, 81 Imaging time-of-flight 

secondary ion mass spectrometry (ToF-SIMS) provides detailed spatial (5–20 µm) and 

chemical information providing a new perspective to biological tissue analysis that has 

not been available using techniques commonly used for clinically relevant samples, 

such as high-performance liquid chromatography (HPLC), fluorescent microscopy, and 

immunohistochemistry.11, 33 Recent chemical imaging research using a Myc-driven 

mouse model of renal cell carcinoma demonstrated that glutamine derived lipids and 

metabolites drive tumor progression.200 Further chemical imaging research using a Myc 

model of lung adenocarcinoma also showed that tumors have distinct lipid signatures 

compared with normal tissue.201 These studies were conducted using entire cancerous 

kidney or lung sections, but individual Myc-induced pancreatic islet tumors have yet to 

be explored in this manner. In this work, we provide evidence of significant metabolic 

changes occurring within Myc driven β cell tumors and the surrounding tissue by 

combining sophisticated animal models with imaging ToF-SIMS. We also demonstrate 

the application of ToF-SIMS and second harmonic generation (SHG) microscopy to 

address heterogeneity within tumors and the microenvironment to determine the 

presence of blood vessels.  

 MATERIALS AND METHODS 6.3

6.3.1 MOUSE TISSUE SAMPLES AND PREPARATION 

The pIns-c-mycERTAM/p53-/- Myc-inducible mouse model was used to generate 

pancreatic β cell tumors.202 In this model the c-Myc gene (hereafter referred to as Myc), 

is regulated by an insulin promoter and generates a chimeric mutant estrogen receptor 

fused to the C-terminus of the Myc protein.203 The presence of this fusion allows for - 

Myc induction using tamoxifen injection, and the insulin promoter provides tissue 

specific expression in pancreatic β-cells.192, 202 On induction of Myc , hyperplasia and 

vascularization of β-cell islets was evident by 6 days. After 6 days of Myc activation, 

pancreatic tissues were harvested and frozen in optimal cutting temperature (OCT) 
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compound. Control pancreas samples were harvested from p53-/- mice, which had also 

been injected with tamoxifen for 6 days.202 4-µm thick cryosections were used for 

hematoxylin and eosin (H&E) staining or for ToF-SIMS analysis. Since the cryosection 

analyzed by ToF-SIMS is mounted directly onto a silicon wafer, H&E images of the 

tissue sections provide a reference to guide identification and selection of neoplastic 

islets within the tissue. 

6.3.2 MASS SPECTROMETRY IMAGING 

All ToF-SIMS experiments were performed with an ION-TOF TOF.SIMS 5-100 

instrument (ION-TOF GmbH, Münster, Germany) equipped with a liquid metal ion gun 

(LMIG) for analysis and an electron flood gun for charge neutralization. The LMIG was 

used to generate a pulsed 25 keV Bi3
+ beam impacting the target at an angle of 45°. 

The Bi3
+ beam was set in spectroscopy mode for high mass resolution to acquire 

spectra and images in both polarities. The Bi3
+ current was typically 0.13–0.15 pA. 

Target currents were measured before each data set using a Faraday cup. Large optical 

stitches of all tissues were produced by manually stitching images from the video 

camera within the ToF-SIMS before analysis. Optical stitch images were then aligned to 

H&E images using the tissue borders to aid in selecting areas where analysis patches 

were to be acquired. For all data collection, HMR positive ion data was acquired 

followed immediately by HMR negative ion data on the same area. X and Y sample 

stage coordinates were saved in the software to ensure data acquired was from the 

same region in both polarities. Mass resolution (m/Δm) for the C2H3
+ ion was greater 

than 4500. Positive ion spectra were calibrated to CH3
+, C2H3

+, and C4H5
+. Negative ion 

spectra were calibrated to CH-, OH-, and C2H
-.Spectra were acquired from 1 mm x 1 

mm “patches” comprising of 25 or 24 200 µm x 200 µm “tiles” on each tissue. Each tile 

contains 256 x 256 pixels, giving the patches a total pixel count of 1280 x 1280 and a 

pixel size of 781 nm x 781 nm. The purpose of analyzing smaller areas is to capture the 

localized areas of the islet tumors and to image the entire sample, which can undergo 

sample degradation or lipid migration over time.9 The Bi3
+ dose was limited to ≤5.0×1011 

ions/cm2 for each tile in both positive and negative ion modes, resulting in a total Bi3
+ 

dose ≤1.0× 1012 ions/cm2 per tile so the static limit would not be surpassed. SurfaceLab 
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6 software (ION-TOF GmbH, Münster, Germany) was used for all analyses. A total of 

three Myc and four control tissue sections were analyzed with each tissue having a 

minimum of three selected patches.  

6.3.3 SECOND HARMONIC GENERATION (SHG) 

The multiphoton excitation fluorescence (MPEF) and SHG images were acquired 

with a scanning confocal multiphoton microscope (Olympus, FV1000 MPE BX61) with a 

20x objective. The light source was a tunable laser (Spectra-Physics Mai Tai) with 

λexc at 910 nm and with bandpass filters at 495–540 nm for the MPEF channel and 420–

460 nm for the SHG channel. The detectors were photon multipliers, located so that the 

SHG captures in back-scattering mode and the MPEF in epifluorescence mode. All 

SHG experiments were performed on H&E stained slides. 

6.3.4 DATA ANALYSIS 

 Principal component analysis (PCA) was applied to ToF-SIMS images and spectra 

data acquired from the tissues. PCA is applied to ToF-SIMS images to determine the 

largest sources of chemical variance within the ToF-SIMS image. The scores images 

correspond to the loadings, which provide the distinct molecular species responsible for 

the variance within the scores images, thus providing a method to spatially identify 

correlated masses/molecules for further investigation.  

Regions of exposed silicon substrate and OCT (e.g. holes or tears from cutting 

tissue and embedding medium surrounding the tissue section) were excluded from all 

analyses by applying a threshold to the pixels with a Si+ signal, where m/z 27.9 was 

used to detect silicon and m/z 332.2 (C14H29
+, a fragment of the benzalkonium additive 

in OCT)13 is used to detect OCT areas. PCA was performed using the NBToolbox 

ImageGUI (Daniel Graham, NESAC/BIO, University of Washington), that operate within 

MATLAB (MathWorks, Natick, MA). Peaks were chosen that had a maximum intensity 

two times or more than that of the average background intensity. The spectra from all 

tissues were overlaid and then peaks were manually selected and integrated to full 

width half max. A total peak list of 1017 and 1349 peaks were chosen from the positive 

and negative ion modes, respectively. Normalization was not applied to imported image 
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patches; image data were preprocessed by Poisson scaling and mean centering before 

PCA.  

 A comparison of relative intensities was achieved by first selecting regions of 

interest (ROIs) of either islets or acinar tissue without vascularized areas and 

normalizing ions to the total ion counts. This resulted in a total of 23 Myc and 12 control 

islets. The acinar ROIs resulted in 9 regions for Myc and 10 for the control. Normalized 

ion counts from these ROIs were then compared using Welch’s unpaired t-tests with P-

value < 0.05 chosen as statistically significant.  

 RESULTS 6.4

The objective of this work was to use ToF-SIMS to map and identify molecules 

associated with the metabolic changes induced by Myc overexpression in pancreatic β 

cells tumors and the adjacent cellular environment, in the pIns-MycERTAM;p53−/− mouse 

model with Myc-inducible pancreatic β cell tumorigenesis. In this model, the induction of 

Myc promotes rapid tumorigenesis, with tumors occupying the majority of the pancreas 

within 12 days, for this reason we chose to study the 6 day stage where there is evident 

hyperplasia and a distinct exocrine tissue available for analysis. Imaging ToF-SIMS and 

PCA were used to identify, map, and compare chemical differences within Myc-induced 

islet tumors and surrounding acinar cells t after 6 days of Myc activation with tamoxifen 

in the pIns-MycERTAM;p53−/− mouse model (referred to hereafter as Myc tissues) and 

pancreatic islets from p53-/- mice, also treated with tamoxifen, were used as controls 

(hereafter referred to as control tissue). 

6.4.1 DISTINGUISHING TUMOR ISLETS FROM THE ACINAR TISSUE USING IMAGING PCA 

Determining the spatial distribution of distinct lipids and metabolic intermediates 

within Myc induced β cell tumors and the acinar tissue surrounding these tumors can 

identify metabolic abnormalities related to Myc-induced cellular proliferation and 

signaling. This information may also provide insight into the metabolic cross-talk 

occurring between these two environments.  

PCA of ToF-SIMS image data resulted in a separation between the Myc-induced 

tumor and acinar tissue in both polarities in PC1, demonstrating that the largest amount 
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of chemical variance was between these regions. Figure 6.1 shows positive polarity 

PCA data, which exhibits separation of tumor from the surrounding acinar tissue within 

the first principal component scores images for the Myc tissue. The PC1 scores and 

loadings reveal the major differences in chemistries between the tumor (Figure 6.1a) 

and acinar tissue (Figure 6.1b). PC1 positive loadings relating to the tumor are 

dominated by the salt or salt containing peaks, such as the potassium isotope at m/z 

40.96 (41K+), CNKNa+ (m/z 87.96), and CNK2
+ (m/z 103.93). Molecular peaks of 

metabolic interest also found in the positive loadings were Fe+ (m/z 55.94), histidine 

fragments (C5H8N3
+, m/z 110.07), phenylalanine fragments (C8H10N

+, m/z 120.08), 

phosphatidylcholine fragments C6H17NPO4
+, C5H14NPO4Na+, and C5H14NPO4K

+ (m/z 

198.10, 206.06, 222.03), and heme fragments (C29H21FeN4
+, C29H23FeN4

+, 

C30H25FeN4
+, C34H32FeN4O4

+, m/z 481.05, 483.08, 497.10, 616.18) 204, 205 (Figure 6.1a). 

PC1 negative loadings indicated that the acinar tissue surrounding the tumor correlated 

with Mg+ (m/z 23.98), small hydrocarbon fragments (C3H5
+, C4H6

+, C5H7
+, m/z 41.04, 

54.05, 67.05), and choline (C5H14NO+, m/z 104.11) (Figure 6.1b).  
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Figure 6.1. Positive polarity PCA of ToF-SIMS image of Myc tissue region after removal of 
substrate/embedding medium signal. (a) PC1 positive scores image displaying the Myc islet tumor. (b) 
PC1 negative scores image displaying the acinar tissues. (c) PC1 loadings plot displaying the chemical 
species that correspond to scores images. Key potassiated masses are colored green, histidine and 
phenylalanine colored red, masses corresponding to heme fragments is labeled. Scale bar is 200 µm. 

Recent work using matrix assisted laser desorption mass spectrometry imaging 

(MALDI-MSI) to investigated how Myc overexpression affects lipid metabolism in lung 

cancer observed an increased K+ associated with tumors and a higher proportion of 

potassiated lipids in tumor regions.201 Calcium and ATP-sensitive K+ ion channels at the 

cell surface membrane of pancreatic β cells control insulin secretion. In healthy β cells, 

the potassium ion channels are normally open allowing potassium to diffuse out of the 

cell, but when the metabolism of glucose produces ATP, the ATP-sensitive potassium 

ion channels close.206 Deregulation of this channel as well as an increased extracellular 

K+ associated with the tumor may account for the K+ adducts observed in loadings that 

correlate to the tumor.  

In contrast to the Myc pancreatic tissue, where differences between islet and 

acinar tissue were evident in the first PC scores, there was no evident difference for this 

first PC in the PCA scores of image data in controls. Instead, the control islet was 

typically observed in PC2 to PC3 scores and associated with collagenous and 
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vasculature structures. This indicates that the chemical variance between the islet and 

the acinar tissue was much lower than what is exhibited in the Myc tissue. 

Individual ToF-SIMS images of key fragments for both Myc and control are 

illustrated in Figure 6.2. Fe+, histidine and heme fragments were all observed in 

localized spots within the tumor (Figure 6.2d-f). The presence of these ions is indicative 

of blood or vasculature present within the tumor, as histidine is known to be found on 

hemoglobin and pIns-c-mycERTAM/p53-/- islet tumors202 produce highly hemorrhagic 

vasculature192. Unlike the Myc islet tumors, the control islets did not exhibit increased 

signals of Fe+, histidine, phenylalanine, or heme fragments within the islet (Figure 6.2j-

l). However, the acinar tissue of the control islet correlated with Mg+ as was observed in 

the Myc tissue, and this is illustrated in Figure 6.2b & h.  

 

Figure 6.2. ToF-SIMS images of metabolites observed in PCA across mouse pancreatic tissue sections. 
Top (letters a-f), show Myc tissues; bottom (letters g-l) show control pancreatic tissues. Observed 
masses Mg

+
 (m/z 23.98), C14:0, C14H27O2

- 
(m/z 227.20), Fe

+
 (m/z 55.93), histidine, C5H8N3

+
 (m/z 110.07), 

sum of heme fragments C29H21FeN4
+
, C29H23FeN4

+
, C30H25FeN4

+
, C34H32FeN4O4

+
 (m/z 481.05, 483.08, 

497.10, 616.18). Signal from substrate and embedding medium were removed from images and can be 
seen as areas that are black and show no signal. Scale bar is 200 μm. 

PCA of ToF-SIMS negative polarity image data also distinctly separated the Myc 

islet tumor from the remaining acinar tissue within the first PC (Supplemental Figure 

S.6.3). The positive loadings associated with the tumor are dominated by ions CN- and 

CNO-, Cl-, and C14:0 (m/z 26.00, 42.00, 34.96, and C14H27O2
-, m/z 227.20), but higher 

mass lipid fragments, such as vitamin E (C29H49O2
-, m/z 429.38) and fragments of 

sphingomyelin (SM) (34:1) (C36H69NO6P
-, C38H76N2O6P

-, m/z 642.51, 687.56) are also 

observed. The presence of myristic acid (C14:0, m/z 227.20) localized within the tumor, 
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not previously documented in Myc-induced tumor lipid imaging work to date, shows a 

clear alteration in the lipid metabolism of Myc β cell tumors that is restricted to the tumor 

and does not arise in the surrounding acinar tissue. SM has been shown as a marker 

for the surface of β cells, but is also an indicator of the functionality of the cells. Previous 

investigations observed that there is a correlation between insulin secretory capacity 

and the presence of SM in islets, where a higher level of SM correlates with a higher 

expression of insulin.207 SM (34:1) and its fragments were also localized within the 

control islets (Supplemental Figure S.6.2).  

In Myc tissues the PC1 negative scores in the negative polarity were indicative of 

the acinar tissue around the tumor. The majority of the negative loadings in PC1 that 

are correlated with acinar tissue are consistent with salt adducts as indicated by masses 

ending with 0.8 to 0.9. However, linoleic acid (C18:2, C18H31O2
-, m/z 279.23) and a 

phosphoinositol fragment (C9H16PO9
-, m/z 299.06) also had distinguishable negative 

loadings values. The presence of linoleic acid outside of the islets can be explained by 

previous investigations showing stimulatory effects on insulin secretion from β cells.208 

The presence of linoleic acid was also observed in the tissue surrounding the control 

islets (Supplemental Figure S.6.2) and thus this is not a distinguishing feature of acinar 

tissue adjacent to Myc-induced β cell tumors. 

Similarly to positive polarity PCA results, PCA of the negative polarity image data 

could not separate the control islets from the surrounding acinar tissue. Overall, the 

most distinct difference between Myc-induced islet tumors and control islet in the 

negative data was the absence of C14:0 within the control islet (Figure 6.2c & i). Key 

ToF-SIMS images of masses observed in PCA can be seen in Supplemental Figure 

S.6.1 and Supplemental Figure S.6.2.  

6.4.2 TUMOR HETEROGENEITY  

Tumor heterogeneity is known to affect multiple properties such as responses to 

therapy, proliferation, and invasion.209 Therefore, using ToF-SIMS to spatially 

characterize molecular intratumor heterogeneities may lead to the deconvolution of 

metabolic mechanisms occurring during tumor progression. The PCA scores image 

shown in Figure 6.1a and ToF-SIMS images in Figure 6.2d-f, indicate areas of 
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intratumor heterogeneity within the tumor. Using a method we previously developed and 

applied to breast tissue,210 we separate out the tumor islet region by applying PCA to 

the PC1 scores image shown in Figure 6.1a. Utilizing this method provides a direct 

characterization of the chemical variation occurring spatially within the tumor observed 

in both Figure 6.1 and Figure 6.2. These results are shown in Figure 6.3 for the positive 

polarity and in Supplemental Figure S.6.4 for the negative polarity. 

The positive polarity results separated the high intensity regions within the tumor 

in PC1 positive scores as shown in Figure 6.3a. The positive loadings (Figure 6.3c) 

associated with the high intensity regions showed loadings of Fe+, histidine fragments 

(C4H6N2
+, C5H8N3

+, C6H5N2O
+, m/z 82.05+, 110.07+, 121.04+) and heme fragments.204, 

205 These fragments observed by PCA of these regions of interest (ROIs) further 

provided chemical identification of these spatial locations and identified fragments that 

may potentially be related to vasculature and providing interior tumor characterization. 

As described above, masses that are associated with blood were present within the 

tumor, which may be providing visualization of early angiogenesis or blood vessel 

leakiness occurring within and around the tumor. Both angiogenesis and blood vessel 

leakiness occur frequently in tumors and provide both nutrients and oxygen that 

facilitate rapid tumor growth.211, 212 
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Figure 6.3. Positive polarity PCA of ToF-SIMS image of the Myc islet tumor ROI. (a) PC1 positive scores 
image displaying the high intensity regions within the Myc islet tumor. (b) PC1 negative scores image 
displaying the tumor interior. (c) PC1 loadings plot displaying the chemical species that correspond to 
scores images. Key potassiated masses are colored green, histidine fragments are colored red, and 
masses corresponding to heme fragments is labeled. Scale bar is 200 µm. 
 

The PC1 negative scores seen in Figure 6.3b displayed the interior of the tumor 

and the corresponding negative loadings exhibited short chain hydrocarbon fragments, 

with most fragments associated with phosphatidylcholine, known to be the main lipid 

component within the cellular membrane. These chemical species are to be expected in 

the remaining areas of the tumor as these lipids make up the cellular components and 

membrane of the cells present in the islet.  

The negative polarity PCA results also displayed separation of the high intensity 

regions from the remainder of the tumor in PC1 (Supplemental Figure S.6.4a). The 

positive scores displayed the tumor interior and the positive loadings exhibited fatty 

acids (C14:0, C16:0, C16H31O2
-, C18:1, C18H33O2

-, and C18:0, C18H35O2
-, m/z 227.20, 

255.23, 281.25, 283.26 respectively). All the fatty acids present within the islet tumor, 

besides C14:0, have been shown to be fragments of larger lipids in viable tumors and 

tumor tissues.27, 201, 213 
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The negative polarity PC1 negative scores, which correlate to the high intensity 

areas, displayed high loadings of CN- and CNO-. These molecular fragments are 

typically indicative of proteins or amino acids. These data agree with what was 

observed in the positive polarity, as the heme and histidine fragments both contain CN- 

and CNO-.  

6.4.3 SECOND HARMONIC GENERATION MICROSCOPY OF TUMORS AND BLOOD VESSELS  

Using second harmonic generation (SHG) we sought to determine if there was 

any ordered structure similar to vasculature at these high intensity regions observed 

with ToF-SIMS within tumor areas. SHG is restricted to molecules with a non-

centrosymmetric organization and provides for detailed optical images of fibrillary 

collagen and has been shown to image mixtures of collagens I and III around blood 

vessels.115 Figure 6.4 shows images of a Myc tissue area that has both a tumor with the 

high intensity regions and a blood vessel next to a tumor. The molecular signals 

associated with both what appear to be blood and vasculature are shown in the ToF-

SIMS images (Figure 6.4b-d) and are localized in the same areas as seen in the H&E 

image (Figure 6.4a). The chemistry of the blood vessel region at a higher magnification 

with a ToF-SIMS overlay image is shown in Figure 6.4f, where Fe+, histidine and heme 

fragments in green exhibit signal from the blood vessel, while phosphocholine shown in 

red represents the islet tumor boundary, and Mg+ in blue shows the acinar tissue 

outside the tumor. The blood vessel from Figure 6.4a & e imaged by SHG can be seen 

in Figure 6.4g. The structure of collagen within the blood vessel can be observed in the 

SHG image represented by a falsely colored green. Merging the SHG fluorescence 

(green) with autofluorescence (red) from the tissue (Figure 6.4h) provides contrast, 

showing red in the cellular regions and the yellow overlay where the blood vessel 

structure is located. The suspected blood or vasculature areas can easily be observed 

in the H&E image of the Myc islet tumor in Figure 6.4i. Comparing these areas from 

Figure 6.4i to the ToF-SIMS overlay image of an adjacent section (Figure 6.4j), it can be 

seen that Fe+, histidine and heme fragments (green) show similar localizations. It is 

evident by the SHG image in Figure 6.4k that there is no collagen present that would 

suggest blood vessel structure within the tumor islet, the small circular areas of 



www.manaraa.com

108 

 

fluorescence are tissue debris trapped within the H&E mounting medium resulting in the 

scattering of photons. This combination of techniques provides evidence that these high 

signal regions are not vasculature. 

 

Figure 6.4. Images of vasculature and blood lakes using a combination of H&E, ToF-SIMS, and SHG. 
Top row; (a) shows the adjacent H&E Myc tissue section region containing both a tumor with blood lakes 
and blood vessels, (b-d) show the adjacent tissue section analyzed by ToF-SIMS and corresponding 
fragments related to blood lakes and vasculature. Heme fragments used for summed ToF-SIMS image 
shown in (d) C29H21FeN4

+
, C29H23FeN4

+
, C30H25FeN4

+
, C34H32FeN4O4

+
 (m/z 481.05, 483.08, 497.10, 

616.18). Middle row; letters (e-h) show the blood vessel region magnified. Bottom row; (letters i-l) show 
the islet tumor region magnified. (i,j) show a ToF-SIMS RGB overlay of red denoting the tumor 
(phosphocholine fragment, C5H14NPO4Na

+
, m/z 206.06) green denoting blood lakes or vasculature (sum 

of Fe
+
, histidine and heme fragments listed above), and blue denoting surrounding tissue (Mg

+
, m/z 

23.98). (g,k) show green colored fluorescence images acquired from SHG, where (g) shows the structure 
of the collagen lining the blood vessel and (k) shows scattering from debris but no SHG signal within the 
tumor. (h,j) show the merged SHG and autofluorescence acquired using SHG, where the red represents 
autofluorescence occurring from the surrounding H&E stained cells. Scale bar is 100 µm. 
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These data are consistent with previous results which showed that erythrocytes 

remained present in pancreatic islet tumors after the vascular system was emptied and 

perfused with fixative solution due to defective blood vessel linings.212 Some of these 

remaining red blood cells would form discrete blood lakes, but further examination of the 

blood lakes showed no evidence in being directly connected to the blood stream and 

were lined with tumor cells. Further H&E and SHG images of blood lakes can be 

observed in Supplemental Figure S.6.5. 

6.4.4 MOLECULAR DIFFERENCES BETWEEN MYC TUMOR AND CONTROL PANCREATIC TISSUE 

To accurately associate changes occurring between the tumor microenvironment 

present in the Myc tissues, vasculature was removed from the dataset and all peaks 

within the whole mass range were used for a complete comparison against the control 

tissues. The tissues were separated into two regions of interest (ROIs), the islets and 

the surrounding acinar tissue, and the peak intensities in the spectra for each region 

were compared between the Myc and control pancreatic sections. Using Welch’s t test 

all peaks were tested and compared and it was found that there were significant 

changes to the amino acid, nucleotides, and lipid content between the tissues. Table 

6.1,Table 6.2, and Table 6.3 show the percentage change of biomolecules present in 

Myc and control islets and surrounding acinar tissue in both positive and negative 

polarities. 

 Amino acids and carnitines were found to have an increased normalized intensity 

while monoacylglycerides (MAGs) and diacylglycerides (DAGs) decreased within the 

Myc islets compared with the control. The largest changes were observed in the 

histidine fragment C5H8N3
+ (m/z 110.07) with a 2-fold increase in intensity, heme 

fragments with an approximately 2.5-3 fold increase in intensity, and Fe+ with a 1.5 fold 

increase in intensity in the Myc islets due to the presence of blood lakes. Serine 

(C2H6NO+, m/z 60.05) exhibited an approximate 40% increase in intensity of in the Myc 

islets. Other key amino acid fragments such as methionine (C2H5S
+, m/z 61.01), 

phenylalanine (C9H8O
+, m/z 132.05), and tryptophan (C11H8NO+, m/z 170.07) showed 

an approximate increase of 20–25%. Many other amino acids exhibited a small increase 

between approximately 10% and 18% and are listed in Table 1. There was a decrease 
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of monoacylglycerides (MAGs) and diacylglycerides (DAGs) within Myc islets as seen 

with MAG (18:2), MAG (18:1), MAG (18:0) (m/z 337.29, 339.29, 341.31), DAG (36:2) 

and DAG (36:1) (m/z 603.59 and 605.63), yet long chain fully saturated PC (30:0) (m/z 

706.55) and PC (32:1) (m/z 732.55) were elevated by 105% and 44% respectively. 

However, PC (34:1) (m/z 760.59) and its potiassiated (PC (34:1) + K, m/z 798.55) 

adduct decreased by approximately 40%. Palmitoylcarnitine (m/z 400.35), which 

facilitates the transfer of long-chain fatty acids from the cytoplasm into the mitochondria 

during the oxidation of fatty acids, showed an increase of nearly 50% within Myc islets. 

Table 6.1. Comparison of biomolecules identified in positive polarity for Myc islets and control islets. All 
results are statistically significant with a value of p<0.05 according to t test with Welch’s correction.  
 

Description Formula Measured 
m/z 

Myc Islets 
Mean (x 10

-4
) 

Control Islets 
Mean (x 10

-4
) 

Percent 
Difference 

Heme Fragment C
29

H
21

FeN
4
 481.05 0.18  ± 0.09 0.05  ± 0.02 291.2 

Heme Fragment C
29

H
23

FeN
4
 483.08 0.21  ± 0.11 0.05  ± 0.03 287.0 

Heme Fragment C
30

H
25

FeN
4
 497.10 0.18  ± 0.09 0.05  ± 0.02 250.7 

Iron Fe 55.93 0.40  ± 0.15 0.16  ± 0.03 147.5 
PC(30:0) C

38
H

77
NO

8
P 706.53 0.04  ± 0.01 0.02  ± 0.01 104.8 

Histidine C
5
H

8
N

3
 110.07 6.1  ± 1.8 3.1  ± 1.0 96.8 

Palmitoylcarnitine C
23

H
46

NO
4
 400.35 0.08  ± 0.02 0.05  ± 0.03 47.5 

PC(32:1) C
40

H
79

NO
8
P 732.55 0.04  ± 0.01 0.02  ± 0.01 43.7 

Serine C
2
H

6
NO 60.045 3.5  ± 0.56 2.5  ± 0.61 38.8 

PC(30:0)+K C
38

H
77

NO
8
PK 744.50 0.06  ± 0.02 0.04  ± 0.02 30.2 

Phenylalanine C
9
H

8
O 132.05 0.57  ± 0.07 0.45  ± 0.05 26.9 

Carnitine C
7
H

16
NO

3
 162.11 0.23  ± 0.02 0.18  ± 0.02 24.5 

Tryptophan C
11

H
8
NO 170.06 0.67  ± 0.08 0.55  ± 0.09 20.7 

Methionine C
2
H

5
S 61.01 1.7  ± 0.33 1.4  ± 0.39 20.6 

Glycine C
3
H

6
NO 72.04 3.2  ± 0.24 2.7  ± 0.29 17.3 

Glycine CH
4
N 30.03 37  ± 5.1 32  ± 4.8 15.6 

Arginine CH
5
N

3
 59.05 8.6  ± 1.6 7.5  ± 1.3 15.2 

Arginine C
4
H

10
N

3
 100.09 2.4  ± 0.30 2.1  ± 0.34 14.7 

Tyrosine C
8
H

10
NO 136.08 1.4  ± 0.17 1.2  ± 0.21 13.2 

Glutamine C
4
H

6
NO 84.05 6.0  ± 0.88 5.3  ± 1.0 13.1 

Threonine C
4
H

5
O 69.04 9.5  ± 1.1 8.4  ± 1.1 13.0 

Valine C
5
H

7
O 83.05 7.5  ± 0.54 6.7  ± 0.50 12.0 

Tyrosine C
7
H

7
O 107.05 2.8  ± 0.27 2.5  ± 0.25 10.5 

DAG (36:1) C
39

H
73

O
4
 605.55 0.04  ± 0.01 0.05  ± 0.02 -26.8 

DAG (36:2) C
39

H
71

O
4
 603.54 0.03  ± 0.01 0.05  ± 0.02 -29.7 

MAG(18:0) C
21

H
41

O
3
 341.30 0.06  ± 0.01 0.09  ± 0.02 -31.5 

MAG(18:2) C
21

H
37

O
3
 337.27 0.05  ± 0.01 0.08  ± 0.02 -34.0 

MAG(18:1) C
21

H
39

O
3
 339.29 0.06  ± 0.01 0.09  ± 0.03 -34.7 

PC(34:1)+K C
42

H
82

NO
8
PK 798.54 0.06  ± 0.03 0.11  ± 0.06 -39.5 

PC(34:1) C
42

H
83

NO
8
P 760.57 0.08  ± 0.04 0.13  ± 0.09 -40.1 
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 Myc islets showed over a 3-fold increase in myristic acid (C14:0, m/z 227.20) as 

shown in Table 2. Increases of approximately 30% and 20% were observed in adenine 

(C5H4N5
-, m/z 134.048) and guanine (C5H3N5

-, m/z 133.04), respectively and likely 

reflect nucleotide biosynthesis within the tumor. Myc islets showed an 85% decrease in 

cholesterol sulfate compared to control islets. Phophatidylethanolamine (PE) (38:4) and 

PE (38:3) (m/z 750.55, 752.60) also exhibited a decrease in Myc islets of more than half 

of the intensity observed in the control. Fatty acids such as arachidonic acid (C20:4, m/z 

303.24), linolenic acid (C18:3, m/z 277.23), oleic acid (C18:1, m/z 281.25), stearic acid 

(C18:0, m/z 283.26), eicosapentaenoic acid (C20:5, m/z 301.22), eicosatrienoic acid 

(C20:3, m/z 305.26), and eicosadienoic acid (C20:2, m/z 307.27) were all decreased in 

the Myc islets compared with the control with decreases ranging from approximately 

40% to 55%. SM (34:1) characteristic fragments were also decreased by 20–25% in 

Myc islets. 
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Table 6.2. Comparison of biomolecules identified in the negative polarity for Myc islets and control islets. 
All results are statistically significant with a value of p<0.05 according to t test with Welch’s correction.  
 

Description Formula Measured 
m/z 

Myc Islets 

Mean (x 10
-4

) 
Control Islets 

Mean (x 10
-4

) 
Percent 
Difference 

Myristic Acid, 14:0 C
14

H
27

O
2
 227.20 2.5  ± 0.76 0.58  ± 0.13 341.0 

Adenine C
5
H

4
N

5
 134.05 7.1  ± 2.2 5.4  ± 1.5 32.3 

Guanine C
5
H

3
N

5
 133.04 1.6  ± 0.42 1.3  ± 0.29 22.6 

Thymine C
5
H

5
N

2
O

2
 125.03 7.7  ± 0.81 7.0  ± 0.96 9.4 

Pyruvic Acid C
3
H

4
O

3
 87.01 9.8  ± 0.33 11  ± 0.97 -7.9 

Palmitic acid; 16:0 C
16

H
31

O
2
 255.23 22  ± 3.7 25  ± 4.6 -12.7 

FA(24:0) C
24

H
47

O
2
 367.35 0.05  ± 0.01 0.06  ± 0.01 -14.1 

FA(C22:4) C
22

H
35

O
2
 331.26 0.13  ± 0.02 0.15  ± 0.02 -17.3 

Eicosenoic Acid; 20:1 C
20

H
37

O
2
 309.28 0.27  ± 0.04 0.33  ± 0.05 -18.4 

FA(C24:1) C
24

H
45

O
2
 365.34 0.08  ± 0.01 0.09  ± 0.01 -19.3 

SM (34:1) C
37

H
75

N
2
O

6
P 673.51 0.10  ± 0.02 0.12  ± 0.03 -21.3 

SM (34:1) C
40

H
80

N
2
O

6
P 715.58 0.07  ± 0.02 0.09  ± 0.03 -24.0 

SM (34:1) C
36

H
69

NO
6
P 642.50 0.44  ± 0.12 0.58  ± 0.18 -24.6 

SM (34:1) C
34

H
67

NO
6
P 616.48 0.26  ± 0.06 0.35  ± 0.11 -25.4 

FA(C22:5) C
22

H
33

O
2
 329.24 0.12  ± 0.02 0.18  ± 0.03 -29.6 

FA(C22:6) C
22

H
31

O
2
 327.23 0.11  ± 0.01 0.16  ± 0.03 -32.3 

Eicosapentaenoic Acid; 20:5  C20
H

29
O

2
 301.22 0.15  ± 0.03 0.24  ± 0.06 -38.8 

Eicosadienoic Acid; 20:2 C
20

H
35

O
2
 307.26 0.29  ± 0.05 0.52  ± 0.13 -44.9 

Stearic Acid; 18:0 C
18

H
35

O
2
 283.26 8.3  ± 1.6 15  ± 2.5 -45.0 

Vitamin E C
29

H
49

O
2
 429.37 0.39  ± 0.13 0.72  ± 0.23 -45.4 

Eicosatrienoic Acid; 20:3 C
20

H
33

O
2
 305.25 0.41  ± 0.08 0.78  ± 0.16 -46.6 

C18:3 C
18

H
39

O
2
 277.22 0.28  ± 0.04 0.54  ± 0.11 -49.0 

Oleic Acid; 18:1 C
18

H
33

O
2
 281.25 6.1  ± 1.5 12  ± 3.1 -50.6 

PE(38:4) C
43

H
77

NO
8
P 766.55 0.03  ± 0.01 0.06  ± 0.02 -53.8 

Arachidonic Acid; 20:4 C
20

H
31

O
2
 303.23 0.58  ± 0.16 1.3  ± 0.47 -56.1 

PE(38:4) C
43

H
77

NO
7
P 750.54 0.03  ± 0.01 0.07  ± 0.03 -56.6 

PE(38:3) C
43

H
79

NO
7
P 752.57 0.03  ± 0.01 0.09  ± 0.03 -65.9 

Linoleic Acid; 18:2 C
18

H
31

O
2
 279.23 1.8  ± 0.46 5.8  ± 1.9 -69.5 

 

 The acinar tissue surrounding the islets in both the Myc and control tissues 

presented less variation of biomolecules between tissue types than what was observed 

between islets. In the positive polarity, the largest changes were observed in 

palmitoylcarnitine which had a 37% increase in in Myc tissue and iron with a 20% 

increase. In contrast methionine (fragment C2H5S
+, m/z 61.01) was decreased by 19% 

in the Myc versus control acinar. All other amino acids that showed a statistically 

significant difference (p ≤ 0.05) between the normalized intensity means in the acinar 

tissue, exhibiting decreases ranging from 8% to 14%, are listed in Table 6.3.  
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 The Myc acinar tissue showed decreased intensities in all major biomolecules 

when compared with the control acinar tissue, with large decreases observed in all 

lipids except C14:0. PE (38:4) and PE (38:3) exhibited the largest decreases of 37% 

and 39%, respectively, within the Myc surrounding acinar tissue. SM (34:1) fragments 

all showed a consistent decrease ranging from 26–35%. In addition, smaller fatty acid 

fragments such as eicosadienoic acid (20:2) and palmitic acid (C16:0, m/z 255.23) 

demonstrated a decrease of 25–27%. Adenosine monophosphate (AMP) 

(C10H13N5O7P-, m/z 346.06), a possible metabolite from the cyclic-AMP or hydrolysis of 

adenosine-diphosphate (ADP), was found to be 25% lower in Myc surrounding acinar 

tissue. Other nucleotides such as thymine and guanine were also found to be slightly 

decreased in the Myc surrounding acinar tissue by 11–15%.  

Table 6.3. Comparison of biomolecules identified in both negative and positive polarity for the 
surrounding acinar tissue of Myc and control. All results are statistically significant with a value of p<0.05 
according to t test with Welch’s correction.  
 

Description Formula Measured 
m/z 

Myc Acinar  

Mean (x 10
-4

) 
Control Acinar 

Mean (x 10
-4

) 
Percent 
Difference 

Positive Polarity 

Palmitoylcarnitine C
23

H
46

NO
4
 400.35 0.06  ± 0.01 0.05  ± 0.01 36.6 

Iron Fe 55.93 0.17  ± 0.02 0.14  ± 0.01 20.2 
Alanine/cysteine C

2
H

6
N 44.05 86  ± 3.0 94  ± 7.0 -8.6 

Tryptophan C
11

H
8
NO 170.06 0.71  ± 0.04 0.81  ± 0.10 -11.7 

Arginine C
4
H

10
N

3
 100.09 2.5  ± 0.29 2.9  ± 0.43 -14.0 

Glutamine C
4
H

6
NO 84.05 6.1  ± 0.92 7.1  ± 1.1 -14.1 

Methionine C
2
H

5
S 61.01 1.9  ± 0.34 2.3  ± 0.47 -18.5 

Negative Polarity 

Thymine C
5
H

5
N

2
O

2
 125.04 6.3  ± 0.61 6.3  ± 0.72 -11.0 

Guanine C
5
H

4
N

5
O 150.04 3.7  ± 0.55 3.7  ± 0.66 -14.9 

GPGro headgroup  C
6
H

12
O

6
P 211.04 0.51  ± 0.03 0.51  ± 0.06 -12.2 

Palmitic acid; 16:0 C
16

H
31

O
2
 255.23 21  ± 5.8 21  ± 7.1 -24.5 

Adenosine-5-phosphate C
10

H
13

N
5
O

7
P 346.06 0.38  ± 0.08 0.10  ± 0.03 -24.7 

SM (34:1) C
38

H
76

N
2
O

6
P 687.55 0.10  ± 0.01 0.12  ± 0.05 -26.0 

Eicosadienoic acid; 20:2 C
20

H
35

O
2
 307.26 0.09  ± 0.02 0.38  ± 0.15 -27.2 

SM (34:1) C
34

H
67

NO
6
P 616.48 0.06  ± 0.02 0.09  ± 0.04 -28.0 

SM (34:1) C
38

H
74

N
2
O

6
P 673.51 0.12  ± 0.03 0.06  ± 0.02 -33.4 

SM (34:1) C
40

H
80

N
2
O

6
P 715.58 0.03  ± 0.01 0.03  ± 0.02 -34.9 

PE(38:4) C
43

H
77

NO
7
P 750.54 0.03  ± 0.01 0.03  ± 0.02 -36.5 

PE(38:3) C
43

H
79

NO
7
P 752.57 0.03  ± 0.01 0.03  ± 0.02 -38.7 

 DISCUSSION 6.5

Our analyses provide evidence of significant metabolic changes occurring within 

Myc driven β cell tumors and the surrounding tissue, which demonstrates a proof-of-
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concept for utilizing ToF-SIMS to identify large scale changes that occur in tumor and 

stromal cell metabolism during tumorigenesis. The specific alterations of significance 

include, the de novo synthesis of fatty acids such as C14:0 and PC30:0, the increase in 

palmitoylcarnitine in the tumor and acinar tissue surrounding it, the increase in 

nucleotides and the increase in amino acids within the tumor but depletion of amino 

acids within the acinar tissue. 

Metabolites with high signal intensity within tumors included carnitine and 

palmitoylcarnintine and suggest increased fatty acid oxidation, as both are involved in 

transporting fatty acids across the mitochondrial membrane for oxidation and energy 

generation. The increase in palmitoylcarnintine and decrease in palmitate (C16:0) in 

Myc acinar tissue suggests the tumor may also engage mechanisms to deplete 

palmitate from the surrounding environment to satisfy the high metabolic demands of 

tumor growth.  

Metabolites increased in Myc-acinar tissue include AMP and these levels may be 

influenced by Myc expression in the islet tumor. Myc overexpression is reported to 

deplete ATP, resulting in the activation of AMP-activated protein kinase (AMPK), a key 

protein for regulating cellular energy.214 AMPK is switched on by the rise in the 

AMP:ATP ratio, which can either result from cellular stresses occurring with depletion of 

ATP (e.g. hypoxia or glucose deprivation) or stresses that increase ATP consumption 

(e.g. excessive cell growth), which are common occurrences in tumor cells.180 AMPK 

activation inhibits biosynthetic pathways related to fatty acid and cholesterol synthesis 

while increasing catabolism.215 This would agree with our data as we observed an 

increase in palmitoylcarnitine, which facilitates fatty acid oxidation, in both the Myc islets 

and acinar tissue surrounding the tumor. Together these data further supports the 

hypothesis that the high energy demands of the Myc β cell tumor impacts the 

metabolism of the surrounding cells and tissue, thereby providing a conducive tumor 

promoting microenvironment. 

The observed decrease in SM within the Myc islets is an indicator that the β cells 

are losing their capacity to produce insulin as there is a direct correlation between 

insulin secretory capacity and SM presence in islets.207 SM synthase 1 and 2 have 

critical roles in allowing insulin vesicles release from Golgi cisterna and their inhibition 
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repressed insulin secretion.216 The decrease in β cell function could also be indicative of 

cellular dedifferentiation. According to Ischenko et. al, Myc is crucial for inducing the 

transformation from tumor cells to cancer stem cells.217 Furthermore, activation of Myc 

in pancreatic β cells precipitates an acute loss of insulin production capacity with genes 

related to insulin production and other β cell lineage markers reduced significantly after 

72 hours, indicating a loss of β cell differentiation.218 In addition, other research has 

shown that genome reprogramming and dedifferentiation are important early steps in 

pancreatic ductal adenocarcinoma tumor initiation and progression.219-221
 The decrease 

in SM found in the Myc acinar tissue may, in contrast, possibly be linked to AMPK 

activation and the inhibition of complex fatty acid synthesis resulting in shuttling of fatty 

acids to the tumor.  

Lipids altered in Myc β cell tumors include increases in the short chain, fully 

saturated fatty acid, C14:0, and is likely a product of Myc-induced de novo fatty acid 

synthesis from glucose and/or possibly from glutamine via reverse carboxylation.222 This 

would require overriding the AMPK block on synthesis outlined above but is consistent 

with previous studies demonstrating that Myc increases the gene expression profile for 

fatty acid synthesis and can also increase the profile of certain lipids in different cell 

types.199, 213, 223, 224 Evaluating the status of other lipids entities, the decreased intensity 

of arachidonic acid (20:4; AA) in the Myc islets is notable, as other groups have found 

its levels to be increased in Myc-activated tissues, such as the lung and lymphoma 

tissue.201, 213 In these models increased AA is likely linked to production of eicosanoids, 

which regulate the inflammatory response and are implicated in cancer progression.225, 

226 However, in pancreatic β cells arachidonic acid stimulates insulin secretion and its 

production requires DAG and MAG lipases227 and a supply of MAG and DAG. In the 

Myc β cell tumors the drop in AA is correlated with reduction in MAG and DAG 

fragments with similar decreases ranging from 27–35% and providing further evidence 

of loss of function and the potential dedifferentiation of β cells. 

 Phospholipids PC (30:0) and PC (30:0) + K+ were increased in the Myc islets 

and this is consistent with the high demand for membrane lipids generated in a rapidly 

growing tumor and possibly facilitated by the p53-/- status of these tumors.228 These PC 
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increases could explain the potential fate of the highly increased short chain fatty acid, 

C14:0, as the composition of PC (30:0) is most likely C14:0 and C16:0.  

The increase in a wide array of amino acids within the Myc islets is a potential 

marker of enhanced cellular growth and proliferation, as growing tumors require large 

amounts of energy and building blocks for the construction of new cellular 

components.180, 229 The approximate 39% increase in serine observed in the Myc islets 

compared with the control islets is in agreement with prior investigations of cancer 

metabolism, as the serine biosynthetic pathway represents a critical change in glucose 

metabolism contributing to tumor growth and cellular reprogramming.230-232 3-

phosphoglycerate, a glycolytic intermediate, is converted to serine through a series of 

enzymes, a number of which are upregulated in Myc-induced liver tumors (PHGDH, 

PSAT1 and PSPH),233 and Myc activation of serine biosynthesis aids cancer 

progression under nutrient deprived conditions.234 Further serine metabolism by serine 

hydroxymethyltransferase, also Myc regulated,235 leads to the production of glycine, 

which also increased by approximately 17% within MYC islets. Serine and glycine are 

precursors used in the folate cycle, which in turn provides precursors to generate 

methionine236 and methionine was increased within the Myc islets and decreased in the 

surrounding acinar tissue. Methionine adenosyltransferase (MAT), an enzyme that 

catalyzes the first step in methionine metabolism, has been associated with rapid 

growth in cells and dedifferentiation of cells within the liver182, 183 and methionine 

metabolism is deregulated in Myc-driven liver cancer.234 The role of methionine provides 

possible insight into the metabolic contribution to physiological changes occurring in our 

model, as the β cells within the Myc islets are showing signs of dedifferentiation as 

discussed above and are in a state of rapid growth. The depletion of methionine in the 

acinar tissue around the Myc islet is likely due to the high requirement of methionine 

needed for MAT and subsequent methyl donation within the tumor facilitating epigenetic 

changes associated with dedifferentiation, which requires gene silencing of dedicated 

tissue lineage markers.237 Other amino acids increased in Myc islets include the 

essential amino acids phenylalanine and tyrosine. Previous studies have demonstrated 

that these two essential amino acids, both potentially transported by the Myc regulated 

transporter Slc7a5,238 are key contributors to primary tumor growth and metastasis.239 
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These studies by Elstad et al. demonstrated that a diet that restricts phenylalanine and 

tyrosine resulted in longer survival and inhibition of primary tumor growth and 

metastasis in mice. Additional amino acids increased by 10-15% in Myc β cell tumors 

include arginine a provider of pivotal metabolic intermediates and essential for cancer 

cell growth,240 valine an essential amino acid with increased uptake in cancer cells241 

and also threonine, which if combined with induction of threonine dehydrogenase would 

supplement tumor cell pools of glycine and acetyl CoA, contributing to S-

adenosylmethionine synthesis the abundance of which regulates histone methylation 

and cell fate.242  

Finally, a counterintuitive finding was the increase in glutamine observed in the 

Myc islets, as other groups have noted that Myc overexpression drives glutamine 

catabolism rather than synthesis.200, 243 This increase in glutamine in the tumor may be 

derived from a combination of de novo synthesis and transport of glutamine from the 

surrounding cells as there is depletion of glutamine in Myc acinar cells. Glutamine is 

highly concentrated in the blood lakes present in Myc β-cell tumors and these may act 

as a fuel source sink providing metabolites to the tumor.  

 CONCLUSION 6.6

Imaging ToF-SIMS provides a new approach for imaging the tumor 

microenvironment and tumor heterogeneity and our results demonstrate s the potential 

to differentiate altered metabolic processes occurring within cancerous tissues. PCA of 

ToF-SIMS image data of pancreatic tissue containing β cell tumors revealed distinct 

chemical differences between the lipid and amino acid content within the tumor and 

surrounding tissue. Characterization of intratumor heterogeneity was successfully 

accomplished by selecting regions of interest (ROIs) to separate the tumor region from 

the surrounding tissue and applying PCA to the ROI data. PCA of the tumor region 

allowed for chemical identification of spatial heterogeneity occurring within the tumor, 

showing the composition of blood lakes in discrete areas and the remaining 

biomolecules present within the tumor. The combination of ToF-SIMS images and SHG 

demonstrated that two imaging modalities can correlate with each other in defining the 

biological structures within tissue, such as blood vessels. Lastly, data interpretation 
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using ROIs of ToF-SIMS images, peak intensity comparisons, and SHG, provides a 

method to observe significant changes occurring within pancreatic β cell tumors and the 

surrounding tissue. Together these data collection and analysis methods demonstrate 

that imaging ToF-SIMS can provide biologically valuable chemical characterization of 

metabolites in tissues comprising the tumor and microenvironment at a high lateral 

resolution with low mass capabilities. 
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 Supplemental Figure S.6.1. Key masses identified from Myc tissues. Scale bars represent 200 µm. 
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Supplemental Figure S.6.2. Key masses identified from control tissues. Scale bars represent 200 µm. 
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Supplemental Figure S.6.3. Negative polarity PCA of ToF-SIMS image of Myc tissue region after 
removal of substrate/embedding medium signal. (a) PC1 positive scores image displaying the Myc islet 
tumor. (b) PC1 negative scores image displaying the acinar tissues. (c) PC1 loadings plot displaying the 
chemical species that correspond to scores images. The edges of the individual raster tiles can be seen 
in the negative scores image due to a charging/saturation effect within the instrument from PO3

- 
(m/z 

78.97), which is observed directly in the negative loadings. Scale bar is 200 µm. 
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Supplemental Figure S.6.4. Negative polarity PCA of ToF-SIMS image of the Myc islet tumor ROI. (a) 
PC1 positive scores image displaying the tumor interior. (b) PC1 negative scores image displaying the 
high intensity regions within the Myc islet tumor. (c) PC1 loadings plot displaying the chemical species 
that correspond to scores images. The positive loadings are dominated by PO3

-
, most which is consistent 

to the charging observed around the individual tiles edges seen in the positive scores image (a). Scale 
bar is 200 µm. 

 

 

Supplemental Figure S.6.5. Images of vasculature and blood lakes using a combination of H&E and 
SHG. Arrows point to blood lakes. (a) Hematoxylin and eosin stained section displaying the Myc islet 
tumor in the center and blood vessel located to its upper right. (b) SHG image demonstrating collagen 
structure at a high intensity signal (green) around the blood vessel and surrounding the tumor. (c) merged 
image of autofluorescence and SHG providing contrast of the tissue section and blood lakes. Scale bars 
represent 200 µm. 
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 CONCLUSIONS AND FUTURE DIRECTIONS Chapter 7.

 CONCLUSIONS 7.1

The overarching goal of this dissertation was the continued development of 

tissue analysis using imaging time-of-flight secondary ion mass spectrometry (ToF-

SIMS). The work presented here has successfully demonstrated that ToF-SIMS is a 

powerful analytical tool capable providing detailed and spatially precise molecular 

signatures of tumors and tumor microenvironments, presenting a new perspective for 

investigating cancerous tissues.  

A percentage of this work was focused on developing a methodology that would 

allow for the comparison of specific regions across many tissues. This work provided a 

method to identify and compare specific regions (e.g. cellular and stromal) within tissue 

samples using an unsupervised multivariate analysis technique. This resulted in the 

ability to consistently isolate regions from tissue sections that varied significantly per 

section. This work was seminal for further investigations into human breast cancer 

tissue analyses. 

With this newly developed model, multiple human breast cancer tissue biopsies 

were compared to one another in order to determine what metabolic factors contribute 

to chemotherapeutic resistance. Comparing the isolated regions using principal 

component analysis (PCA) resulted in a large amount of variability between all samples 

without a clear separation of subtype (e.g. triple negative, luminal B, etc.) or patient 

response to chemotherapy. However, when separating tissue biopsies into their 

respective subtypes resulted in observable trends between patients who were 

responsive or non-responsive to chemotherapeutics.  

In the final chapter, the focus was switched from patient response to interpreting 

the tumor microenvironment in a mouse pancreatic cancer model. This work showed 

that combining ToF-SIMS imaging and non-linear optical imaging methods, such as 

second harmonic generation (SHG), can correlate with each other in defining biological 

structures, such as blood vessels, within tissue. Also, using regions of interest (ROIs) of 

ToF-SIMS images was successful in observing significant metabolic changes occurring 
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within the tumors and surrounding tissue related to fatty acid synthesis and amino acid 

metabolism. 

Together these data collection and analysis methods demonstrate that imaging 

ToF-SIMS can provide biologically valuable chemical characterization of metabolites in 

cancerous tissues.  

 FUTURE DIRECTIONS 7.2

There is an enormous amount of data that has been collected and can be 

expanded upon from the work presented here. However, there are many factors to 

consider when analyzing tissue data after it has been collected. Here I present 

alternative methods to analyze this data and future investigations. 

7.2.1 HUMAN BREAST CANCER PATIENT DATA ANALYSIS  

PCA was primarily used in Chapter 5 to observe the major chemical variance 

between breast cancer patients and their response to chemotherapy. PCA is useful tool 

as an initial analysis to help reduce the dimensionality of the data, but it is examining 

the raw data will be crucial to understanding metabolic mechanisms occurring during 

chemotherapeutic resistance. One approach would be to focus on subtypes (e.g. triple 

negative or luminal B) and create groups of all the pathological responding and non-

responding patients and compare specific mass intensities against each other. A 

preliminary approach of this can be seen in Table A.4. However, even though these 

mean intensities are observed to be statistically significant (p ≤ 0.05), the standard 

deviation can be very large, which may render the comparison ineffective. Therefore, 

each mass intensity comparison should be examined and proved valid instead of 

accepting only from statistical significance. Furthermore, once major differences have 

been found in the tissues the large impact will come from the biological interpretation. 

This can be done by combining the ToF-SIMS data with gene expression data available 

from the Fred Hutchinson Cancer Research Facility.   

  Another approach would be to compare specific pathological areas to each 

other. As shown in Table A.3, pathologist indicated regions (e.g. infiltrating ductal 

carcinoma and tumor with lymphocytes) could be compared to each other.  
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Lastly, the positive data remains to be analyzed for the majority of the patient 

data. ToF-SIMS can provide a way to observe changes that are occurring within the 

amino acid metabolism of cancerous tissues, as shown in Chapter 6. However, the PCA 

of images and the compiling of a dataset this large is both computationally and labor 

intensive.  

7.2.2 MYC PANCREATIC CANCER INVESTIGATIONS 

A major advantage to the mouse model used in Chapter 6, is that it is an 

inducible and regressible β cell neoplasia model. This means that the tumors can be 

induced, or grow, for a period of time and then allowed to regress, or shrink. For 

example, the data presented in Chapter 6 shows a mouse model that had tumor 

induction for 6 days. In future experiments it would be possible to perform ToF-SIMS of 

pancreas tissues that had 6 days of induction with 6 days regression. This also provides 

for the opportunity to do multiple durations of inductions and regressions within the 

mouse model to analyze.  Utilizing the method and analysis shown in Chapter 6 on 

multiple models or time durations of induction and regression could provide a way to 

observe major metabolic changes occurring at different tumor stages, including 

progression, regression, and how the surrounding tissue responds to these changes. 

Furthermore, with a genetic mouse model it would be possible to obtain genetic 

information to corroborate what is observed in ToF-SIMS data.  

 

 

 
 



www.manaraa.com

127 

 

APPENDIX 

  



www.manaraa.com

128 

 

APPENDIX A. ADDITIONAL HUMAN BREAST CANCER SAMPLE DATA 

This appendix is to aid in further understanding the breast cancer patient data 

presented in Chapters 4 & 5. It is also provided to allow for future investigations using 

the data set.  

Appendix A.1  REFERENCE TABLES FOR BREAST CANCER BIOPSIES 

Table A.1. Reference table of breast cancer patient data. Includes study identification number, Porter lab 
number, pre/post treatment designation, and number related to patient numbers in Chapter 5. Receptor 
status (estrogen (ER), progesterone (PR), human epidermal growth factor receptor 2 (HER2)), cytokeratin 
5/6 status, epidermal growth factor receptor (EGFR) status, tumor grade, and immunohistochemistry 
(IHC) (triple negative, TN and HER2 enriched, HER2) gene expression subtype, and pathological 
response (pCR) are shown here.  

 

 

Study ID
Porter Lab Number 

(pre/post)

Patient No. 

in Chap. 5
ER PR HER2 CK5/6 EGFR KI67 Grade IHC subtype

Gene Expression 

Subtype

Pathological 

Response

7587-01 120803 1 NEG NEG NEG POS POS 35 3 TN HER2-enriched non-pCR

7587-03 120804/120924 2 POS POS NEG NEG NEG 5 1 Luminal A Luminal A non-pCR

7587-04 120805 3 NEG NEG NEG POS POS 91 3 TN Basal-like near pcr

7587-05 120876 4 POS POS POS NEG NEG 71 3 Luminal B Luminal B non-pCR

7587-07 120926/130314 5 NEG NEG NEG POS NEG 85 2 TN Basal-like non-pCR

7587-08 130162 6 POS NEG POS NEG NEG 44 3 Luminal B Luminal B pCR

7587-09 130163 7 POS POS POS NEG NEG 63 3 Luminal B Luminal B pCR

7587-11 130200 8 POS POS POS NEG NEG 20 2 Luminal B Luminal A non-pCR

7587-12 130199 9 NEG NEG POS POS POS 30 3 HER2 HER2-enriched near pCR

7587-13 130250 10 POS POS NEG NA NA 57 3 Luminal B Luminal B non-pCR

7587-14 130315 11 POS POS NEG NEG NEG 35 2 Luminal B Luminal B non-pCR

7587-15 130415 12 POS POS NEG NA NA 19 3 Luminal B Luminal A non-pCR

7587-20 130495 13 NEG NEG NEG POS POS 80 3 TN Basal-like non-pCR

7587-21 130496 14 POS NEG NEG NA NA 69 3 Luminal B Luminal B pCR

7587-22 130698 15 POS POS POS NEG NEG 9 2 Luminal B Luminal B partial responder

7587-23 130528/140276 16 NEG NEG NEG POS NEG 95 3 TN Basal-like pCR

7587-24 130804 17 POS POS POS POS NEG 21 2 Luminal B Luminal B pCR

7587-25 130802 18 NEG NEG NEG POS NEG 69 3 TN Basal-like non-pCR

7587-27 130801 19 NEG NEG NEG POS POS 83 3 TN Basal-like pCR

7587-28 0/140396 23 POS POS POS POS NEG 30 3 Luminal B Luminal B non-pCR

7587-29 140159 20 NEG NEG NEG POS POS 57 3 TN Basal-like pCR

7587-30 140207 21 NEG NEG NEG POS NEG 60 3 TN Basal-like non-pCR

7587-33 140586 22 NEG NEG NEG POS NEG 93 3 TN Basal-like pCR
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Table A.2. Reference table of breast cancer patient data including study identification number, Porter lab 
number, pre/post treatment designation, ToF-SIMS analysis date, and number of ToF-SIMS analysis 
spots on each respective tissue.  
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Table A.3. Reference table of breast cancer patient data displaying each ToF-SIMS analysis sots with 
pathologist interpretation. 

 
 
Table A.4. Preliminary analysis comparing metabolites observed in the PC2 loadings of the cellular 
regions of the triple negative (TN) pathologically responding (pCR) patients to the non-pathologically 
responding (non-pCR) patients as seen in Figure 5.5.    

 
  



www.manaraa.com

131 

 

Appendix A.2 ANALYSIS AREA REFERENCES: HEMATOXYLIN AND 

EOSIN (H&E) STAINED BREAST CANCER TISSUE 

SECTIONS AND SUMMED CN
-
 AND CNO

-
 TOF-SIMS 

IMAGES OF RESPECTIVE ANALYSIS SPOTS 

 

Figure A.1. H&E and corresponding ToF-SIMS camera stitch of tissue 120803 analysis areas.  

 

 
Figure A.2. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 120803. Scale bars are 200 µm. 
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Figure A.3. H&E and corresponding ToF-SIMS camera stitch of tissue 120804 analysis areas. 

Figure A.4. High spatial resolution ToF-SIMS images of summed CN
-
 and CNO

-
 analysis areas from 

tissue 120804. Scale bars are 200 µm. 
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Figure A.5. H&E and corresponding ToF-SIMS camera stitch of tissue 120924 analysis areas. 

 

 
Figure A.6. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 120924. Scale bars are 200 µm. 
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Figure A.7. H&E and corresponding ToF-SIMS camera stitch of tissue 120805 analysis areas. 

 
Figure A.8. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 120805. Scale bars are 200 µm. 
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Figure A.9. H&E and corresponding ToF-SIMS camera stitch of tissue 120876 analysis areas. 

 

 
Figure A.10. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 120876. Scale bars are 200 µm. 
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Figure A.11. H&E and corresponding ToF-SIMS camera stitch of tissue 120926 analysis areas. 

 

 

 

 
Figure A.12. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 120926. Scale bars are 200 µm. 
 



www.manaraa.com

137 

 

 
Figure A.13. H&E (1

st
 & 2

nd
 sections) and corresponding ToF-SIMS camera stitch of tissue 130314 

analysis areas. 
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Figure A.14. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 130314. Scale bars are 200 µm. 
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Figure A.15. H&E and corresponding ToF-SIMS camera stitch of tissue 130162 analysis areas. 

 

 
Figure A.16. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 130162. Scale bars are 200 µm. 
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Figure A.17. H&E and corresponding ToF-SIMS camera stitch of tissue 130163 analysis areas. 

 

 
Figure A.18. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 130163. Scale bars are 200 µm. 
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Figure A.19. H&E and corresponding ToF-SIMS camera stitch of tissue 130200 analysis areas. 

 

 
Figure A.20. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 130200. Scale bars are 200 µm. 
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Figure A.21. H&E and corresponding ToF-SIMS camera stitch of tissue 130199 analysis areas. 

 

 
Figure A.22. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 130199. Scale bars are 200 µm. 
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Figure A.23. H&E and corresponding ToF-SIMS camera stitch of tissue 130250 analysis areas. 

 

 

 
Figure A.24. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 130250. Scale bars are 200 µm. 
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Figure A.25. H&E and corresponding ToF-SIMS camera stitch of tissue 130315 analysis areas. 

 

 
Figure A.26. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 130315. Scale bars are 200 µm. 
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Figure A.27. H&E and corresponding ToF-SIMS camera stitch of tissue 130415 analysis areas. 

 

 
Figure A.28. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 130415. Scale bars are 200 µm. 
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Figure A.29. H&E and corresponding ToF-SIMS camera stitch of tissue 130495 analysis areas. 

 

 
Figure A.30. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 130495. Scale bars are 200 µm. 
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Figure A.31. H&E and corresponding ToF-SIMS camera stitch of tissue 130496 analysis areas. 

 

 

 
Figure A.32. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 130496. Scale bars are 200 µm. 
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Figure A.33. H&E and corresponding ToF-SIMS camera stitch of tissue 130698 analysis areas. 

 

 
Figure A.34. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 130698. Scale bars are 200 µm. 
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Figure A.35. H&E and corresponding ToF-SIMS camera stitch of tissue 130528 analysis areas. 

 

 

 

 

 
Figure A.36. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 130528. Scale bars are 200 µm. 
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Figure A.37. H&E and corresponding ToF-SIMS camera stitch of tissue 140276 analysis areas. 

 

 
Figure A.38. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 140276. Scale bars are 200 µm. 



www.manaraa.com

151 

 

 

Figure A.39. H&E and corresponding ToF-SIMS camera stitch of tissue 130804 analysis areas. 

 

 
Figure A.40. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 130804. Scale bars are 200 µm. 
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Figure A.41. H&E and corresponding ToF-SIMS camera stitch of tissue 130802 analysis areas. 

 

 

 
Figure A.42. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 130802. Scale bars are 200 µm. 
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Figure A.43. H&E and corresponding ToF-SIMS camera stitch of tissue 130801 analysis areas. 

 

 
Figure A.44. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 130801. Scale bars are 200 µm. 
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Figure A.45. H&E and corresponding ToF-SIMS camera stitch of tissue 140396 analysis areas. 

 
Figure A.46. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 140396. Scale bars are 200 µm. 
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Figure A.47. H&E and corresponding ToF-SIMS camera stitch of tissue 140159 analysis areas. 

 

 
Figure A.48. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 140159. Scale bars are 200 µm. 
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Figure A.49. H&E and corresponding ToF-SIMS camera stitch of tissue 140207 analysis areas. 

 

 

 
Figure A.50. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 140207. Scale bars are 200 µm. 
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Figure A.51. H&E and corresponding ToF-SIMS camera stitch of tissue 140586 analysis areas. 

 

 

 

 
Figure A.52. High spatial resolution ToF-SIMS images of summed CN

-
 and CNO

-
 analysis areas from 

tissue 140586. Scale bars are 200 µm. 
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Appendix B.1 ABSTRACT 

The ability to image cells and tissues with chemical and molecular specificity 

could greatly expand our understanding of biological processes.  The sub-cellular 

resolution mass spectral imaging capability of ToF-SIMS has the potential to acquire 

chemically detailed images. However the complexities of biological systems combined 

with the sensitivity of ToF-SIMS requires careful planning of experimental methods.  

Tissue sample preparation methods of formalin fixation followed by paraffin embedding 

(FFPE) and OCT embedding are compared.  Results show that the FFPE can 

potentially be used as tissue sample preparation protocol for ToF-SIMS analysis if a 

cluster ion presputter is used prior to analysis and if non-lipid related tissue features are 

the features of interest.  In contrast, embedding tissue in OCT is found to minimize 

contamination and maintains lipid signals.  Various data acquisition methodologies and 

analysis options are discussed and compared using mouse breast and diaphragm 

muscle tissue.  Methodologies for acquiring ToF-SIMS 2D images are highlighted along 

with applications of multivariate analysis to better identify specific features in a tissue 

sections when compared to H&E images of serial sections.  Identification of tissue 

features is necessary for researchers to visualize a molecular map that correlates with 

specific biological features or functions.  Finally, lessons learned from sample 

preparation, data acquisition, and data analysis methods developed using mouse 

models are applied to a preliminary analysis of human breast tumor tissue sections.  
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